Skip to main content

evaluation - What happens when you divide by ##?



I've been playing around with sequences a bit. In particular with using ## with unary and binary operators.


Let's start simple, the following all make some kind of sense:


  + ## & [a,b] (* a + b *)
x + ## & [a,b] (* x + a + b *)
x * ## & [a,b] (* x * a * b *)
x ^ ## & [a,b] (* x ^ a ^ b *)

Now here is a slightly weird case:


  - ## & [a,b] (* -a*b *)
x - ## & [a,b] (* x - a*b *)


I guess, this sort of makes sense if - is actually interpreted as something like +(-1)*. But it also means that +##-## is generally non-zero.


But now here's the real puzzle:


x / ## & [a,b]   (* x a^(1/b) *)
x / ## & [a,b,c] (* x a^b^(1/c) *)

Wh... what? Can anyone explain what's happening here or at least give some justification like the one for subtraction? Answers which correct my explanation for subtraction are also welcome!


(No, I would never use this stuff in production code. But knowing what exactly is going on under the hood could come in handy some time.)


Bonus Question: Are there any other operators that yield unexpected and potentially "useful" results? (I mean, !## will yield Not[a,b] but that's neither very unexpected nor useful.)



Answer




The documentation for Minus states that



-x is converted to Times[-1,x] on input.



So -Sequence[a,b] == Times[-1,Sequence[a,b]] == Times[-1,a,b] by this definition. Similarly the documentation for Divide states that



x/y is converted to x y^-1 on input.



and therefore x / Sequence[a,b] == x Sequence[a,b]^-1. Sequence[a,b]^c == Power[a, Power[b,c]]. When c == -1 you get Power[b, -1] == 1/b.


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],