Skip to main content

plotting - How do I plot a proper streamline plot, including spacings and line endings?


Mathematica includes two nice built-in tools to visualize vector fields, VectorPlot and StreamPlot. The latter is a useful tool, and it plots the streamlines of the given 2D vector field.


enter image description here


A streamline is an integral curve of the vector field: that is, a curve α(s) whose derivative dαds is proportional at every point to the vector field F(α(s) at that point. These are very useful tools for understanding the qualitative behaviour of many types of vector fields.


However, in certain cases, these diagrams require a bit more structure. In situations where the divergence F of the field matters, and in particular for





  • streamlines of a fluid flow, and




  • field lines of an electric or magnetic field,




there are two constraints which are followed, by convention, very strictly, and which make available quantitative information about the field from the diagram, by encoding the field strength in the local density of streamlines. (For more on how and why they work, see this physics.SE thread). Specifically:





  • Streamlines should never end or begin in any region in which F is zero; they should start at point sources or regions where F>0, and end at point sinks or regions where F<0.




  • The vector field flow between adjacent streamlines, i.e. the integral LFds

    where L joins the two streamlines, should be constant. (There is some interplay when the field is in 3D, where it's the flow across unit "cell" surfaces that join three or more streamlines, or when one is displaying a 2D cross-section of a 3D field, but the principle remains.)




Unfortunately, the built-in StreamPlot function does nothing of the sort, at least out of the box, and I can find no built-in options that will enforce this type of behaviour.


For an example, consider the vector fields ˆr/rn, for n=1 and n=2. These are the electric fields produced in 3D by a line of charge and a point charge, respectively. When seen as a 2D field, the former has no divergence, and the corresponding streamlines should start at the origin and end at infinity; the latter, on the other hand, has negative divergence as a 2D field and its intensity thins out faster than the first, so the local density of field lines should thin out as 1/r away from the origin. If you try to plot them with Mathematica, though, the opposite happens:


enter image description here



Table[
StreamPlot[{x, y}/(x^2 + y^2)^n, {x, -2, 2}, {y, -2, 2}
, ImageSize -> 400, PlotLabel -> "(x,y)/r^{n+1}, n="<>ToString[2 n - 1]
]
, {n, {1, 3/2}}] // GraphicsRow

The field from the line charge, on the left, has approximately constant spacing after a while, but here are streamlines that are created almost at r=1. The field on the right is from a point charge, and it shows the opposite of what it should:



  • streamlines are created away from the origin, instead of destroyed,

  • more streamlines are created than for a line charge,


  • and to top it off, the field is not even rotationally symmetric.


Is there a way to overcome these shortcomings and make StreamPlot, with appropriate options, produce correct versions of these plots? Is there some other way to produce such a diagram properly?




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...