Skip to main content

output formatting - How to build a function object like the built-ins such as Interpolation?


There are many built-in functions that return a function object, such as Interpolation[], BSplineFunction[] ,LinearSolveFunction[] and so on.


enter image description here




Now given that I want to build a function called CAGDBSplineFunction[] like the built-in BSplineFunction[] with the help of Cox-DeBoor algorithm.


First trial, please see here


To achieve the dynamic effect and check the validity of the option like the built-in BSplineFunction


enter image description here


I refactored it as below:



CAGDBSplineFunction::invknots = 
"Value of option SplineKnots \[Rule] `1` should be a non-decreasing \
real sequence of length `2`, or a symbol Automatic.";

Options[CAGDBSplineFunction] =
{SplineDegree -> Automatic, SplineKnots -> Automatic};

CAGDBSplineFunction /:
MakeBoxes[CAGDBSplineFunction[pts_, opts : OptionsPattern[]], _] :=
Module[{n, sk, sd, range},

n = Length@pts - 1;
sk = OptionValue[SplineKnots];
sd = OptionValue[SplineDegree];
(*check the validity of the option SplineKnots*)
If[sk =!= Automatic,
If[n + 1 + sd != Length[sk] - 1,
Message[CAGDBSplineFunction::invknots, sk, n + 2 + sd];
Return[$Failed]];
range = Through[{First, Last}@sk],
range = {0, 1}

]
]
InterpretationBox[
RowBox[{"CAGDBSplineFunction", "[", "{", #1, ",", #2, "}", ",",
"\"<>\"", "]"}], CAGDBSplineFunction[pts, opts]] & @@ range
]

TEST


pts = {{0, 0}, {1, 1}, {2, -1}, {3, 0}, {4, -2}, {5, 1}};
f = CAGDBSplineFunction[pts]


enter image description here


However, it seems that the option value cannot be achieved in a MakeBoxes construct.


J.M. gives me the following suggestion:



Don't try to do both display and processing at once. Set a definition for evaluating CAGDBSplineFunction[], and then set a definition for displaying, via MakeBoxes



According to the J.M.'s hint, I add the defintion to CAGDBSplineFunction[]


CAGDBSplineFunction /: 
MakeBoxes[CAGDBSplineFunction[pts_, opts : OptionsPattern[]], _] :=

InterpretationBox[
RowBox[{"CAGDBSplineFunction", "[", "{", #1, ",", #2, "}", ",",
"\"<>\"", "]"}], CAGDBSplineFunction[pts, opts]] & @@
CAGDBSplineFunction[pts, opts]

CAGDBSplineFunction[pts_, opts : OptionsPattern[]] :=
Module[
{n, sk, sd, range},
n = Length@pts - 1;
sk = OptionValue[SplineKnots];

sd = OptionValue[SplineDegree] /. Automatic -> 3;
(*check the validity of the option SplineKnots*)
If[sk =!= Automatic,
If[n + 1 + sd != Length[sk] - 1,
Message[CAGDBSplineFunction::invknots, sk, n + 2 + sd];
Return[$Failed]];
range = Through[{First, Last}@sk],
range = {0, 1}
]
]


enter image description here




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...