Skip to main content

output formatting - How to build a function object like the built-ins such as Interpolation?


There are many built-in functions that return a function object, such as Interpolation[], BSplineFunction[] ,LinearSolveFunction[] and so on.


enter image description here




Now given that I want to build a function called CAGDBSplineFunction[] like the built-in BSplineFunction[] with the help of Cox-DeBoor algorithm.


First trial, please see here


To achieve the dynamic effect and check the validity of the option like the built-in BSplineFunction


enter image description here


I refactored it as below:



CAGDBSplineFunction::invknots = 
"Value of option SplineKnots \[Rule] `1` should be a non-decreasing \
real sequence of length `2`, or a symbol Automatic.";

Options[CAGDBSplineFunction] =
{SplineDegree -> Automatic, SplineKnots -> Automatic};

CAGDBSplineFunction /:
MakeBoxes[CAGDBSplineFunction[pts_, opts : OptionsPattern[]], _] :=
Module[{n, sk, sd, range},

n = Length@pts - 1;
sk = OptionValue[SplineKnots];
sd = OptionValue[SplineDegree];
(*check the validity of the option SplineKnots*)
If[sk =!= Automatic,
If[n + 1 + sd != Length[sk] - 1,
Message[CAGDBSplineFunction::invknots, sk, n + 2 + sd];
Return[$Failed]];
range = Through[{First, Last}@sk],
range = {0, 1}

]
]
InterpretationBox[
RowBox[{"CAGDBSplineFunction", "[", "{", #1, ",", #2, "}", ",",
"\"<>\"", "]"}], CAGDBSplineFunction[pts, opts]] & @@ range
]

TEST


pts = {{0, 0}, {1, 1}, {2, -1}, {3, 0}, {4, -2}, {5, 1}};
f = CAGDBSplineFunction[pts]


enter image description here


However, it seems that the option value cannot be achieved in a MakeBoxes construct.


J.M. gives me the following suggestion:



Don't try to do both display and processing at once. Set a definition for evaluating CAGDBSplineFunction[], and then set a definition for displaying, via MakeBoxes



According to the J.M.'s hint, I add the defintion to CAGDBSplineFunction[]


CAGDBSplineFunction /: 
MakeBoxes[CAGDBSplineFunction[pts_, opts : OptionsPattern[]], _] :=

InterpretationBox[
RowBox[{"CAGDBSplineFunction", "[", "{", #1, ",", #2, "}", ",",
"\"<>\"", "]"}], CAGDBSplineFunction[pts, opts]] & @@
CAGDBSplineFunction[pts, opts]

CAGDBSplineFunction[pts_, opts : OptionsPattern[]] :=
Module[
{n, sk, sd, range},
n = Length@pts - 1;
sk = OptionValue[SplineKnots];

sd = OptionValue[SplineDegree] /. Automatic -> 3;
(*check the validity of the option SplineKnots*)
If[sk =!= Automatic,
If[n + 1 + sd != Length[sk] - 1,
Message[CAGDBSplineFunction::invknots, sk, n + 2 + sd];
Return[$Failed]];
range = Through[{First, Last}@sk],
range = {0, 1}
]
]


enter image description here




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...