Skip to main content

How to change the variables Qi's to Ri's in one or two steps


I was wondering if there is a command in Mathematica to change all the following Qi's to Ri's? For example, change Q1 to R1, Q2 to R2, etc.


 Q1 a1 + Q2 a2 + Q3 a3 + Q4 a4 + Q5 a5 + Q6 a6 + Q7 a7 + Q8 a8 + 
Q9 a9 + Q10 a10 + Q11 a11 + Q12 a12 + Q13 a13 + Q14 a14 + Q15 a15 +
Q16 a16 + Q17 a17 + Q18 a18 + Q19 a19 + Q20 a20 + Q21 a21 + Q22 a22 +
Q23 a23 + Q24 a24 + Q25 a25 + Q26 a26 + Q27 a27 + Q28 a28 +
Q29 a29 + Q30 a30 + Q31 a31 + Q32 a32 + Q33 a33 + Q34 a34 + Q35 a35 +
Q36 a36 + Q37 a37 + Q38 a38 + Q39 a39 + Q40 a40 + Q41 a41 +

Q42 a42 + Q43 a43 + Q44 a44

I could go through and change the Qi's by hand, but I think there should be a more efficient way to do this.


Thank you.



Answer



I believe I would use:


expr = Q1 a1 + Q2 a2 + Q3 a3 + Q4 a4 + Q5 a5 + Q6 a6 + Q7 a7 + Q8 a8 +
Q9 a9 + Q10 a10 + Q11 a11 + Q12 a12 + Q13 a13 + Q14 a14 +
Q15 a15 + Q16 a16 + Q17 a17 + Q18 a18 + Q19 a19 + Q20 a20 +
Q21 a21 + Q22 a22 + Q23 a23 + Q24 a24 + Q25 a25 + Q26 a26 +

Q27 a27 + Q28 a28 + Q29 a29 + Q30 a30 + Q31 a31 + Q32 a32 +
Q33 a33 + Q34 a34 + Q35 a35 + Q36 a36 + Q37 a37 + Q38 a38 +
Q39 a39 + Q40 a40 + Q41 a41 + Q42 a42 + Q43 a43 + Q44 a44;

expr /. S_Symbol :> Symbol @ StringReplace[SymbolName@S, "Q" -> "R"]

Or more restrictively:


rule = "Q" ~~ x : DigitCharacter .. :> "R" <> x;

expr /. S_Symbol :> Symbol @ StringReplace[SymbolName@S, rule]


I feel that operating only on Symbols is cleaner and safer than converting the entire expression to and from a String.




It is not clear to me if you need this, but if you want to do the replacement after (while) Qi's are assigned values you can do it like this:


{Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12} = Range@12;

expr = Hold[Q1 a1 + Q2 a2 + Q3 a3 + Q4 a4 + Q5 a5 + Q6 a6 +
Q7 a7 + Q8 a8 + Q9 a9 + Q10 a10 + Q11 a11 + Q12 a12];

expr /. S_Symbol :>

RuleCondition @ Symbol @ StringReplace[SymbolName@Unevaluated@S, "Q" -> "R"]


Hold[R1 a1 + R2 a2 + R3 a3 + R4 a4 + R5 a5 + R6 a6 +
R7 a7 + R8 a8 + R9 a9 + R10 a10 + R11 a11 + R12 a12]

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...