Skip to main content

gathering - binning list of lists in unequal bin lengths


I'm lookin for binning of


list1={{"1A",1},{"2A",2},{"170A",170},{"3A",3},{"90A",90},{"80A",80},{"2A",2},{"110A",110},{"222A",222},{"200A",200},{"215A",215},{"30A",30}}


into


bins={{0,20,100,∞}}

according to 2nd element in sublists as bin criterion?



Answer



I think this should work for you:


binBy1[dat_, bins_, fn_] :=
With[{intv = Interval /@ Partition[bins, 2, 1]},
dat //

GroupBy[IntervalMemberQ[intv, fn@#] &] //
KeyMap[Pick[intv, #][[1, 1]] & ] //
KeySort
]

Use:


binBy1[list1, {0, 20, 100, ∞}, Last]


<|{0, 20} -> {{"1A", 1}, {"2A", 2}, {"3A", 3}, {"2A", 2}},

{20, 100} -> {{"90A", 90}, {"80A", 80}, {"30A", 30}},
{100, ∞} -> {{"170A", 170}, {"110A", 110}, {"222A", 222},
{"200A", 200}, {"215A", 215}}|>

If you just want the values:


binBy2[dat_, bins_, fn_] :=
With[{intv = Interval /@ Partition[bins, 2, 1]},
dat //
GroupBy[IntervalMemberQ[intv, fn@#] &] //
KeyMap[Pick[intv, #][[1]] & ] //

Lookup[#, intv, {}] &
]

binBy2[{ {"90A", 90}, {"3A", 3}}, {-50, 0, 20, 100, ∞}, Last]


{{}, {{"3A", 3}}, {{"90A", 90}}, {}}



Performance



This ends up less clean than the code above, which you already feel is complicated, but for performance Interpolation can be far superior to IntervalMemberQ as I used it above.


binsToIFn[bins_List] :=
Interpolation[{Join[{$MinMachineNumber}, bins, {$MaxMachineNumber}],
Range[0, Length@bins + 1]}\[Transpose], InterpolationOrder -> 0]

binBy3[dat_, bins_, fn_] :=
With[{IFn = binsToIFn @ bins},
dat //
GroupBy[IFn @* fn] //
KeyMap[Round] //

Lookup[#, Range[Length@bins + 1], {}] &
]

Note that with this function $MinMachineNumber and $MaxMachineNumber are automatically used as the bounding intervals so they may be omitted from the list.


Timings compared to my first two functions on a large problem:


bins = Union @ RandomInteger[999, 300];
bins = Join[{-10}, bins, {1200}];

big = RandomReal[999, {50000, 2}];


binBy1[big, bins, Last] // Length // Timing
binBy2[big, bins, Last] // Length // Timing
binBy3[big, bins, Last] // Length // Timing


{5.63164, 269}

{5.60044, 269}

{0.109201, 271}


Coolwater's function on my machine:


binBy[big, {bins}] // Length // Timing


{9.36006, 269}

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...