Skip to main content

How I can define a discrete probability distribution with parameters?


I have this function that works similar to a probability generating function


$$g(x):=\left(\frac{c}{D} x^{-1}+\frac{D-t-c}D+\frac{t-d}{D} x+\frac{d}D x^2\right)^M$$


with $g(1)=1$. This is not a generating function in the common sense but from $g$ we can define the following PMF


$$f(k):=\begin{cases}[x^k]g(x),& k>0\\\sum_{k=-M}^0 [x^k]g(x),& k=0\end{cases}$$



and it CDF in a similar manner. I want to use the built-in function ProbabilityDistribution (if this is possible) to define $f$ as a PDF for the discrete random variable $K$ that take values in $\{0,\ldots,2M\}$ and depend on parameters $D,t,c,d$ and $M$ where


$$D,M\in\Bbb N_{>0},\quad 0\le d,c

But in the Wolfram language documentation center there is no information about if ProbabilityDistribution can be used to define distributions that depends on parameters or how to do it.


Some help will be appreciated, thank you.


P.S.: the notation $[x^k]p$ means "the $k$-th coefficient of the series $p$".



Answer



I think getting a symbolic result for general m will take a lot more work. But if a symbolic result for each value of m is satisfactory, here's one way to do it:


(* Set m *)
m = 3;


(* Generating function *)
g[x_] := ((c/bigD)/x + (bigD - t - c)/bigD + (t - d) x/bigD + (d/bigD) x^2)^m

(* pdf of k *)
f[k_] := If[k == 0, Sum[Coefficient[g[x], x, i], {i, -m, 0}], Coefficient[g[x], x, k]]

(* Make a probability distribution *)
distribution = ProbabilityDistribution[f[k], {k, 0, 2 m, 1},
Assumptions -> {bigD ∈ Integers, 0 <= d < bigD, 0 <= c < bigD, 1 <= t < bigD}];


(* Check out Mean, Variance, and Expectation functions *)
meank = Simplify[Mean[distribution]]
(* (3 ((bigD-c) (bigD+c) d+(bigD-c)^2 t+c t^2))/bigD^3 *)
vark = Simplify[Variance[distribution]]
meank = Simplify[Expectation[k, k \[Distributed] distribution]]
vark = Simplify[Expectation[(k - meank)^2, k \[Distributed] distribution]]

(* Brute force *)
sumToOne = Simplify[Sum[f[k], {k, 0, 2 m}]]
meank = Simplify[Sum[k f[k], {k, 0, 2 m}]]

vark = Simplify[Sum[(k - meank)^2 f[k], {k, 0, 2 m}]]

Update


From a comment by the OP there seems to be a difference of opinion as to whether $K$ goes from 0 to $M$ or from 0 to $2M$. I still argue that $K$ ranges from 0 to $2M$:


m = 3;
g[x_] := ((c/bigD)/x + (bigD - t - c)/bigD + (t - d) x/bigD + (d/bigD) x^2)^m
f[k_] := If[k == 0, Sum[Coefficient[g[x], x, i], {i, -m, 0}], Coefficient[g[x], x, k]]

Total[Table[f[k], {k, 0, m}]]
(* 1-(3 d^2)/bigD^2+(3 c d^2)/bigD^3-d^3/bigD^3+(6 d^2 t)/bigD^3-(3 d t^2)/bigD^3 *)


Total[Table[f[k], {k, 0, 2 m}]]
(* 1 *)

However, if 0 to $M$ is desired, then some additional scaling needs to be included to get the probabilities to sum to 1.


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],