Skip to main content

plotting - How to graph a series of coupled oscillators and watch the wave move along them


Here are the differential equations that set's up the 11 coupled oscillators.



new = Join[
Table[x[i]''[t] == - x[i][t] +
0.1*(x[i + 1][t] - 2*x[i][t] + x[i - 1][t]), {i, 1,
9}], {x[0]''[t] == -x[0][t], x[10]''[t] == x[9][t], x[0][0] == 1,
x[0]'[0] == 1, x[1]'[0] == 0, x[1][0] == 0},
Table[x[i][0] == 0, {i, 2, 10}], Table[x[i]'[0] == 0, {i, 2, 10}]]

Here are the solutions.


Solt = NDSolve[new, Table[x[i], {i, 0, 10}], {t, 25}]


Here are the individual plots.


Table[Plot[Evaluate[x[i][t] /. Solt], {t, 0, 25}, 
PlotRange -> All], {i, 0, 10}]

I am trying to figure out how to make a graph so along the x-axis are my i's from 0 to 10, and I can watch the wave move along each oscillator as time moves on. I keep getting errors in which it floods my notebook and doesn't stop unless I close the kernel.


This is what I have so far, and I'm not sure how to incorporate time into this.


Plot[Evaluate[x[i][t] /. Solt], {i, 0, 10}]

EDIT Coupled in a circle


Stew = Join[

Table[x[i]''[t] == - x[i][t] +
0.1*(x[i + 1][t] - 2*x[i][t] + x[i - 1][t]), {i, 1,
9}], {x[10]''[t] == - x[10][t] +
0.1*(x[0][t] - 2*x[10][t] + x[9][t]),
x[0]''[t] == - x[0][t] +
0.1*(x[1][t] - 2*x[0][t] + x[10][t])}, {x[0][0] == 0,
x[0]'[0] == 0, x[1][0] == 1, x[1]'[0] == 0.5},
Table[x[i][0] == 0, {i, 2, 10}], Table[x[i]'[0] == 0, {i, 2, 10}]];

The Dsolve



Loin = NDSolve[Stew, Table[x[i], {i, 0, 10}], {t, 6.28}]

The individual graphs


Table[Plot[Evaluate[x[i][t] /. Loin], {t, 0, 6.28}, 
PlotRange -> All], {i, 0, 10}]

How would I go about putting the i=0 to 10 around in a circle?



Answer



After edit


I think oscillation directions should be parallel.



g[t_] = Table[{Cos[i*2 Pi/11], Sin[i*2 Pi/11], x[i][t]} /. Loin[[1]], {i, 0, 10}]; 

Animate[
Show[
ListPointPlot3D[g[t], PlotRange -> 1.5, BoxRatios -> 1, Filling -> Axis,
PlotStyle -> Directive@AbsolutePointSize@7, Boxed -> False],
ParametricPlot3D[{Cos@t, Sin@t, 0}, {t, 0, 2 Pi}, PlotStyle -> {Dashed, Black}]
,
ImageSize -> 500, ViewVector -> {{Cos[t/15], Sin[t/15], 1} 11, {0, 0, 0}},
AxesOrigin -> {0, 0, 0}, Ticks -> None, Axes -> True, AxesStyle -> {Red, Green, Blue},

SphericalRegion -> True],
{t, 0, 50}]

enter image description here


Before edit


f[t_] = Table[{i, x[i][t]} /. Solt[[1]], {i, 0, 10}];

Animate[
ListPlot[f[t], PlotRange -> {{0, 11}, {-1.5, 1.5}},
Joined -> True, PlotMarkers -> Automatic]

, {t, 0, 25}
]

Good to notice: In f[t] definition := is intentionally replaced by =.


enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...