Skip to main content

calculus and analysis - What is the best way to define Wirtinger derivatives


Wirtinger derivatives ( also called Cauchy operators) in complex analysis are widely used tools. They are defined in the case of one dimensional complex plane as follows


∂∂z=12(∂∂x−i∂∂y),∂∂ˉz=12(∂∂x+i∂∂y)



Where z=x+iy and x,y are real variables. Apparently Mathematica does not support directly these operators. For instance, as it is pointed in my question; Defining a complex partial differential operator, D[ , ] don't support a complex argument #2.


What is the best way to generalize D such that it supports complex variable z = x + I y, such that it is homogeneous with derivatives of the real part x and imaginary part y in a fashion where results of formal computations can be given in terms of x and y, or in terms of z and Conjugate[z]




Update :


Following the suggestion of @xzczd, let me articulate about the concept I have in my head. But the details here are not all requirements for an answer on my question above. It is indeed the converse. As a beginner on Mathematica, any insight can be very helpful for me


Let denote by Dc The wanted generalization of D. The first argument of Dc will be a complex function, expressed in term of a variable z := x + I y. The second argument will be x OR y OR z OR Conjugate[z] (in general real or complex). The third argument will contain a rule of the form Coordinates->"Complex" or "real" which depends of the wanted output whether in terms of ∂z and ∂ˉz or in terms of ∂x and ∂y. note that ∂z and ∂ˉz are defined by the formulas given above. Let's suppose that "Complex" is the default value.


Examples: (I denote by === the output, I use some TeX code, hope it is clear)


Basic identities


Dc[z,z] === 1
Dc[Conjugate[z],z] === 0

Dc[Abs[z],Conjugate[z]] === z
Dc[x,z] === 1/2

General identities


Dc[f[z],z] === \partial_z[f[z]]
Dc[f[z],z,Coordinates->"Real"] === 1/2 \partial_x[f[z]] - 1/2 I \partial_y[f[z]]
x Dc[f[z],x] + y Dc[f[z],y] === z\partial_z[f[z]] + \bar{z} \partial_{\bar{z}} [f[z]]

I hope it is more clear now, and the concept makes some sense. Let me know if you need further explanations.



Answer




Here is one idea for supporting derivatives with respect to z and z∗. First, we need to use SetSystemOptions to avoid differentiating Conjugate/Abs. Something like:


old = "ExcludedFunctions" /. 
("DifferentiationOptions" /. SystemOptions["DifferentiationOptions"]);
SetSystemOptions["DifferentiationOptions" ->
"ExcludedFunctions" -> Union@Join[old,{Abs, Conjugate}]
];

Then, we need to teach D how to differentiate Conjugate/Abs the way we want. To do this we need to make use of the NonConstants option of D so that derivatives of functions with a hidden dependence on Conjugate[z] with respect to Conjugate[z] do not automatically evaluate to 0.


Unprotect[Conjugate, Abs];
Conjugate /: D[z, Conjugate[z], NonConstants->{z}] := 0;

Conjugate /: D[Conjugate[f_], w_, NonConstants->{z}] := Conjugate[D[f, Conjugate[w], NonConstants->{z}]];
Abs /: D[Abs[f_], w_, NonConstants->{z}] := 1/(2Abs[f]) D[Conjugate[f]f, w, NonConstants->{z}]

Without the NonConstants->{z} option, something like D[Abs[z]^2, Conjugate[z]] will evaluate to 0.


D[Abs[z]^2, Conjugate[z]]
D[Abs[z]^2, Conjugate[z], NonConstants->{z}]


0


z




Here are some examples:


D[z, z, NonConstants->{z}]
D[Conjugate[z], z, NonConstants->{z}]
D[Abs[z]^2, Conjugate[z],NonConstants->{z}]
D[(z+Conjugate[z])/2, z, NonConstants->{z}]


1


0



z


1/2



It might be convenient to create a function to package up everything up:


ComplexD[expr_, z__] := With[
{
v = Union @ Cases[{z}, s_Symbol | Conjugate[s_Symbol] | {s_Symbol | Conjugate[s_Symbol], _} :> s],
old = "ExcludedFunctions" /. ("DifferentiationOptions" /. SystemOptions["DifferentiationOptions"])
},
Internal`WithLocalSettings[

SetSystemOptions["DifferentiationOptions" -> "ExcludedFunctions" -> Join[old, {Abs, Conjugate}]];
Unprotect[Conjugate, Abs];
Conjugate /: D[w_, Conjugate[w_], NonConstants->v] := 0;
Conjugate /: D[Conjugate[f_], w_, NonConstants->v] := Conjugate[D[f, Conjugate[w], NonConstants->v]];
Abs /: D[Abs[f_], w_, NonConstants->v] := 1/(2Abs[f]) D[Conjugate[f]f, w, NonConstants->v],

D[expr, z, NonConstants->v],

SetSystemOptions["DifferentiationOptions" -> "ExcludedFunctions" -> old];
Conjugate /: D[w_, Conjugate[w_], NonConstants->v] =.;

Conjugate /: D[Conjugate[f_], w_, NonConstants->v] =.;
Abs /: D[Abs[f_], w_, NonConstants->v] =.;
Protect[Conjugate, Abs];
]
]

The function ComplexD will temporarily change the system options and give Conjugate/Abs the desired D behavior. An example:


ComplexD[Conjugate@Sin[z Conjugate[z]^2], z]
ComplexD[Exp[Conjugate[w] z], Conjugate[w]]



2 z Conjugate[z] Cos[z^2 Conjugate[z]]


E^(z Conjugate[w]) z



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...