Skip to main content

How to represent and manipulate abstract indexed vector (or tensor) expressions?


I have a couple abstract indexed quantities, both differential elements


$dx = dx^\mu e_\mu + x^\mu de_\mu$


$du = du^\mu e_\mu + u^\mu de_\mu$



I can compute the expression $(dx + du) \cdot (dx + du) - dx \cdot dx$ manually on paper, contracting the products appropriately and taking the differences. However, evaluating that end result for specific parameterizations and basis representations becomes messy (I've done only the 3D Euclidian cartesian and cylindrical coordinate cases).


This seems to be a perfect opportunity for a symbolic computation engine, but I'm having trouble starting. The mathematica book hints that tensor expressions can be represented by lists, but an expression of the above form does not require any specific dimensionality, and can still be symbolically manipulated (on paper).


If I use a list, does that list not have to have specific dimension? For example, I'm guessing that I could use an explicit 3D representation for the upper index coordinates like so:


x = { x1, x2, x3 }
u = { u1, u2, u3 }

then define a metric tensor for the lower index coordinates. I don't know how I'd represent the basis vectors $e_\mu$ in Mathematica though, even if I restricted myself to 3D Euclidean spaces.


Is this sort of computation within the scope of Mathematica, and if so, how does one setup the variables?



Answer



On this wikipedia page you find a collection of Tensor software and Mathematica has the biggest section.



The package Ricci, which username acl pointed out in his answer is there, and I personally have used xAct. It looks like this


http://img692.imageshack.us/img692/211/pic1ni.png


And yes, as you suggest in your question, for smaller computation in specific dimensions you can also work in components directly. For me, this usually looks something like this (only have a screenshot atm.).


http://img835.imageshack.us/img835/5023/bild4go.png


Although the expression $de_\mu$ makes me think the package variant is best suited for you.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...