Skip to main content

special functions - Why do these two different zetas produce the same value?



Zeta[-13] == Zeta[-1] == -1/12  

Why do these two different zetas produce the same value?



Answer




In order to understand the issue, we should provide the underlying definitions. Mathematica helps in verifying appropriate relations and definitions. The main functional equation relating Riemann's zeta function $\zeta\;$, to Euler's $\Gamma\;$, established in Riemann's famous paper Über die Anzahl der Primzahlen unter einer gegebener Grösse (1859, English translation here), where he formulated the Riemann hypothesis, can be simply written and evaluated with the system:


Through @ { HoldForm, FullSimplify}[
Zeta[z] == 2^z Pi^(z - 1) Sin[Pi z/2] Gamma[1 - z] Zeta[1 - z]]//
Column // TraditionalForm

$$\begin{align*}&\zeta(z)=2^z\pi^{-1+z}\Gamma(1-z)\sin\left(\frac{\pi z}{2}\right)\zeta(1-z)\\ &\text{True}\end{align*}$$ Similarly we can exploit the definition of Zeta for Re[z] > 1 (see SumConvergence[1/n^z, n]):


Sum[ 1/n^z, {n, Infinity}] == Defer[ Sum[ 1/n^z, {n, Infinity}]] == 
Defer[Product[ 1/(1 - Prime[i]^-z), {i, Infinity}]] // TraditionalForm

$$\zeta(z)=\sum_{n}^\infty \frac1{n^z}=\prod_{i}^\infty \frac1{1-(p_i)^{-z}}$$



List @@ (2^z Pi^(z - 1) Sin[Pi z/2] Gamma[1 - z] Zeta[1 - z])

$$\left\{2^z,\pi^{z-1},\Gamma(1-z),\sin\left(\frac{\pi z}{2}\right),\zeta(1-z)\right\}$$


Let's find adequate values:


Table[{2^z, Pi^(z - 1), Sin[Pi z/2], Gamma[1 - z], Zeta[1 - z]},
{z, {-1, -13}}] // Column

$$\begin{align*} &\left\{\frac12,\frac1{\pi^2},-1,1,\frac{\pi^2}{6}\right\}\\ &\left\{\frac1{8192},\frac1{\pi^{14}},-1,6227020800,\frac{2\pi^{14}}{18243225}\right\} \end{align*}$$


For positive even integers, Zeta evaluates to exact values, and one can calculate them from the above definition, but Mathematica can do it too, e.g.:


HoldForm[ Sum[ 1/n^14, {n, Infinity}]] == Sum[1/n^14, {n, Infinity}] // TraditionalForm


$$\sum_n^\infty \frac1{n^{14}}=\frac{2\pi^{14}}{18243225}$$


Moreover, we have a simple relation between the Euler gamma function and factorial for natural numbers:


 FullSimplify[ Gamma[n] == Factorial[n - 1], n ∈ Integers && n > 0]


True

Finally, one has to check also the rational coefficients of the above formulae:


FactorInteger @ { 8192, 18243225, 6227020800} // Column



{{3, 6}, {5, 2}, {7, 1}, {11, 1}, {13, 1}}
{{2, 10}, {3, 5}, {5, 2}, {7, 1}, {11, 1}, {13, 1}}
{{2, 13}}

Comparison of the factorization results completes our proof. Q.E.D.


Edit


There are infinitely many arguments where Zeta[x]==-1/12, though -13 and -1 seem to be the only integers among them on the other hand negative odd arguments yield rational values.


Reduce[ Zeta[x] == -(1/12) && -1000 < x < 1000, x, Integers]



x == -13 || x == -1

Here we add a plot of contours of the real part equal to -1/12 and the vanishing imaginary part of Zeta in the complex plane:


ContourPlot[ {Re[Zeta[x + I y]] == -(1/12), Im[Zeta[x + I y]] == 0},
{x, -20, 20}, {y, -20, 20}, Evaluated -> True,
PlotPoints -> 100, MaxRecursion -> 5]

enter image description here



Points of Zeta[x + I y] == -(1/12) lie on intersections of the blue and red curves


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...