Skip to main content

programming - Is there a practical way to define a default value for missing keys in an Association?


Clarification


Although I may be missing his point I currently feel that Leonid's comments below are misleading. I am not looking for anything that is not already a part of Association functionality other than a way to define what is returned for a missing key on a per-association basis. I thought that the Block example below made this clear but perhaps not.


I am seeking a way to do something like this:


asc = <|"a" -> 1, "b" -> 2, _ -> 0|>;


asc["x"]

(* desired output: 0 *)

(* actual output: Missing["KeyAbsent", "x"] *)

Critically I am not looking for general pattern matching of Key names however; I only want a way to define one default value for missing keys.




Original ramblings


It can be very useful to define background or default value for an object that can be incremented or otherwise modified. A simple (and for me, common) use is a counter:



count[_] = 0;

++count[#] & /@ {"a", "a", "b", "a", "b", "a"}


{1, 2, 1, 3, 2, 4}

Since there are advantages to Association such as ease of copying and direct manipulation of keys and values I would like to port this method to new function. However I cannot think of a clean, practical way to define a default. (I consider directly overloading System functions such as Increment undesirable.)


I note that it is possible to increment a missing value and then clean it up afterward:


asc = <||>;


++asc[#] & /@ {"a", "a", "b", "a", "b", "a"} /. _Missing -> 0


{1, 2, 1, 3, 2, 4}

This isn't really the same as setting a default value however and it limits the way this method can be used. Somewhat better I think is to temporarily redefine Missing. This at least gives values that are up-to-date while the operation is performed.


asc = <||>;

Block[{Missing},

Missing["KeyAbsent", _] = 0;
++asc[#] & /@ {"a", "a", "b", "a", "b", "a"}
]

asc


{1, 2, 1, 3, 2, 4}

<|"a" -> 4, "b" -> 2|>


This could be packaged a bit more nicely but it still feels like a bit of a kluge.


Is there an approach I am failing to consider? Or by some slim chance is there a hidden way to do this?




Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...