Skip to main content

replacement - Replace custom functions, leave built in functions untouched?



I have three expressions a[x, y], b[x, y], c[x, y] that act as placeholders for functions of two variables x,y. Consider the following substitution:


a[x, y]/(b[x, y] c[x, y]) /. f_[x1_, y1_] :> f[2 x1, 3 y1]


a[2 x, 3 y]/(64 b[x, y]^3 c[x, y]^3)



In the output we see that the numerator expression was substituted properly, but in the denominator the pattern f_ registered for the head Power instead of looking for my own expressions. Of course I can fix this by:


a[x, y]/(b[x, y] c[x, y]) /. a[x1_, y1_] :> a[2 x1, 3 y1] /.b[x1_, y1_] :> b[2 x1, 3 y1] /. c[x1_, y1_] :> c[2 x1, 3 y1]



a[2 x, 3 y]/(b[2 x, 3 y] c[2 x, 3 y])



which gives the desired output. But this amounts to writing three times as many substitution directives and is therefore inconvenient. To fix the first example, I tried using /. f_Symbol[x1_, y1_] :> f[2 x1, 3 y1] or /. f_[x1_, y1_]/;Head[f]===Symbol :> f[2 x1, 3 y1], but this does not correct it. Is there a way to write a proper substitution that works with headers and does not act on built in functions? Thanks for any suggestions.


EDIT:


Just noticed that Head[Power] actually returns Symbol, which is kind of weird. I would have expected it to return e.g. Function, or Directive, or something along the lines. (If one unprotects and clears the Power function, then I would again expect Head[Power] to return Symbol of course. But maybe that's just me...)



Answer



The best method I am aware of to handle this kind of problem is to filter by context.(1)


SetAttributes[user, HoldFirst]
user[s_Symbol] := Context@Unevaluated@s =!= "System`";


a[x, y]/(b[x, y] c[x, y]) /. f_?user[x1_, y1_] :> f[2 x1, 3 y1]


a[2 x, 3 y]/(b[2 x, 3 y] c[2 x, 3 y])

One could include other contexts in the exclusion besides System, or use the inverse and test only for user symbols existing in the "Global`" context. Without additional examples my example is as specific as I can make it.




Regarding the unusual evaluation of the ? operator (PatternTest) please see:



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...