Skip to main content

list manipulation - How to punch a hole in some 3D distribution of points


Suppose we have a long list of 3D Cartesian coordinates, defining a distribution of random points in 3D space. How could we remove all the points inside a sphere of radius sphereRadius located at coordinates sphereLocation = {X, Y, Z}?


This Boolean subtraction is probably trivial, but I didn't found any useful info on how to do it with Mathematica 7.0. Maybe it isn't trivial, after all.





Generalisation : How can we do the same with an arbitrary closed surface, instead of a sphere, if the hole is defined as a deformed sphere ?


holeLocation = {X, Y, Z};
hole[theta_, phi_] = holeLocation +
radius[theta, phi] {Sin[theta]Cos[phi], Sin[theta]Sin[phi], Cos[theta]};

where theta and phi are the usual spherical coordinates.



Answer



Using my solution to a similar question asked on StackOverflow some time ago,


Pick[dalist,UnitStep[criticalRadius^2-Total[(Transpose[dalist]-frameCenter)^2]],0]


which is for any number of (Euclidean) dimensions and should be quite fast.


EDIT


Ok, here is a generalization of the vectorized approach I proposed:


ClearAll[cutHole];
cutHole[relativeData_, holdRadiusF_] :=
Module[{r, theta, phi, x, y, z},
{x, y, z} = Transpose[relativeData];
r = Sqrt[Total[relativeData^2, {2}]];
theta = ArcCos[z/r];

phi = ArcTan[x,y];
Pick[relativeData, UnitStep[r - holdRadiusF[theta, phi]], 1]];

Here is an illustration:


data = RandomReal[6, {10^6, 3}];
holeLoc = {3, 3, 3};
relativeData = Transpose[ Transpose[data] - holeLoc];

Define some particular shape of the hole:


holeRad[theta_, phi_] := 1 + 4 Sqrt[Abs[Cos[theta]]]


Pick the points:


kept =cutHole[relativeData,holeRad];//AbsoluteTiming

(* {0.631836,Null} *)

Visualize:


Show[{
ListPointPlot3D[Cases[kept, {_, _, _?Positive}]],
SphericalPlot3D[

holeRad[\[Theta], \[Phi]], {\[Theta], Pi/4, Pi/2}, {\[Phi], 0, 2 Pi},
PlotStyle -> Directive[Orange, Specularity[White, 10]], Mesh -> None]}]

enter image description here


The main point here is that the filtering function is vectorized and therefore quite fast.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...