For some sets of constants, NDSolve gives me true solutions, but when I try for example, T = 1/(2*2200)
, Mathematica does not respond. What can I do? The code below has no problem, but I need to change the constants defined at the beginning of the code and see the results. Any suggestions?
Io = 3.38*10^-12
NS = 8
Cp = 90*10^-15
Cs = 30*10^-15
T = 1/(2*2100)
ss = 51.23*10^-3
dV = 0.45
Cl = 1*10^-12
V = 0.3
\[Beta] = (2*Io)/((Cs + Cp)*ss)
a = \[Beta]*T
b = \[Beta]*T/2
c = Cl/((Cs + Cp)/(2 T))
d = Io/((Cs + Cp) /(2 T))
s = NDSolve[
{Vo[t] == V +
Log[b/(E^((c*Vo'[t] + d)/ss) - 1)] ss +
Log[(b* E^((dV + c*Vo'[t] + d)/ss))/(E^((c*Vo'[t] + d)/ss) - 1)] ss +
Log[(a* E^((dV + c*Vo'[t] + d)/ss))/(E^((2*(c*Vo'[t] + d))/ss) - 1)] ss (NS-1),
Vo[0] == 0.3
},
Vo,
{t, -0.0001, 1}]
Plot[Evaluate[Vo[t] /. s], {t, -0.0001, 1}, PlotRange -> All]
Comments
Post a Comment