Skip to main content

list manipulation - Optimize inner loops


I'm Mathematica newbie so please be gentle :) I have this, heavily non-optimized part of code, which I would like to speed up. I have put all matrices to be RandomReal, but in my code they take specific values. Also, matrices mat3, mat4, mat6 and mat7 consist of random simple trigonometric functions. Any kind of help is much appreciated. I have read about Map, Table, Do, Functional Programming... but I don't know how to apply it.


Code is part of Finite element-Finite strip calculation. I don't mind losing computing time during "real" calculation, but this part of code is just placing elements of matrices into other places with just few calculations. Matrices mat2, mat5, mat9, mat10 and mat11 need to be stored for later data processing.


Bonus question: is it possible to Compile this part of code?


Hope I gave optimal amount of data about my problem


All the best, Aleksandar



limit1 = 10;
limit2 = 20;
limit3 = 10;
limit4 = 15;
mat1 = RandomReal[{-100, 100}, {limit3, 2}];
mat2 = RandomReal[{-100, 100}, {limit1, limit2, limit3, 2}];
mat3 = Table[Sin[m*\[Pi]*y] + Cos[s*\[Pi]*y], {m, limit2}, {s, limit3}];
mat4 = Table[Sin[m*s*\[Pi]*y] + Cos[s*\[Pi]*y], {m, limit2}, {s, limit3}];
mat5 = RandomReal[{-100, 100}, {limit1, limit2, limit3, 6}];
mat6 = Table[Sin[m*m*\[Pi]*y] + Cos[s*\[Pi]*y], {m, limit2}, {s, limit3}];

mat7 = Table[Sin[m*\[Pi]*y] + Cos[s*s*\[Pi]*y], {m, limit2}, {s, limit3}];
mat8 = RandomReal[{-100, 100}, {limit2, limit3, limit4, 2}];
mat9 = RandomReal[{-100, 100}, {limit1, limit2, limit3, limit4}];
mat10 = RandomReal[{-100, 100}, {limit1, limit2, limit3, limit4}];
mat11 = RandomReal[{-100, 100}, {limit1, limit2, limit3, limit4}];

For[n = 1, n < limit1 + 1, n++,
For[i = 1, i < limit2 + 1, i++,

For[j = 1, j < limit3 + 1, j++,


y = (mat1[[j, 1]] + mat1[[j, 2]])/2;

mat2[[n, i, j, 1]] = mat3[[i, j]];

mat2[[n, i, j, 2]] = mat4[[i, j]];

mat5[[n, i, j, All]] = 1/2 (mat6[[i, j]] + mat7[[i, j]]);

Clear[y];


For[k = 1, k < limit4 + 1, k++,

zz = 1/2 (mat8[[i, j, k, 1]] + mat8[[i, j, k, 2]]);

mat9[[n, i, j, k]] = {mat5[[n, i, j, 1]] + zz*mat5[[n, i, j, 4]],
mat5[[n, i, j, 2]] + zz*mat5[[n, i, j, 5]],
mat5[[n, i, j, 3]] + zz*mat5[[n, i, j, 6]]};
mat10[[n, i, j, k]] = mat11[[n, i, j, k]].mat9[[n, i, j, k]];


Clear[zz]
]

]]
]


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...