Skip to main content

combinatorics - How to apply a permutation to a symmetric square matrix?


Given a symmetric square matrix, how can I apply a permutation to the rows and columns (i.e. the same permutation to both the rows and the columns) such a way that the new structure of the matrix should follow the new row and column order?


Consider an order of rows/columns, according to which the elements of a set are arranged in a matrix:


order = Range[5];
matrix = Table[Subscript[a, i, j], {i, 5}, {j, 5}];
TableForm[matrix, TableHeadings -> {order, order}]

Mathematica graphics


Now take a permutation of the row/column order:



newOrder = RandomSample[order]
(*
==> {1, 4, 5, 2, 3}
*)

FindPermutation finds the appropriate permutation cycle for the new order:


permutation = FindPermutation[order, newOrder]
Permute[order, permutation]
(*
==> Cycles[{{2, 4}, {3, 5}}]

==> {1, 4, 5, 2, 3}
*)

Now the question is: How to easily and elegantly apply the above permutation (preferably in its Cycles form) to the matrix to yield the following one:


Mathematica graphics


Some notes:



  • The matrix is always square and symmetric.

  • Column and head orders are always identical.

  • Bear in mind that order, and consequently matrix, can be big (e.g. 4^8 for order)


  • Since matrix can be big, I'm looking for a method, that applies the permutation 'locally', that is without reconstructing the whole table every time, or without applying replacements/functions enumerating each element, thus no dispatch table should be used. This is rather important, as it could be that the new order only swaps two columns/rows, and nothing else.



Answer



How about:


ord = {1, 4, 5, 2, 3}
matrix[[ord, ord]]

(You can convert any permutation (including Cycles) to an index list using PermutationList.)


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...