Skip to main content

differential equations - NDSolve::ndsz problem



I'm using NDSolve to solve a set of coupled differential equation which depend on a variable x. I noticed that when I set the range of x from a small value to a large value, I obtain solutions. But when I do the opposite I get a problem!


For example when I consider this,


t1 = 3000;
t2 = 4*^16;
f = 1/(16 Pi^2);
NDSolve[{y'[x] == f/x * 16 y[x]^3, y[t1] == 0.37}, y, {x, t1, t2},
Method -> {"ExplicitRungeKutta", "DifferenceOrder" -> 4}];

No errors and I can find:


y[t2] /. %


{0.920385}

Then I use this value of y[t2] as the initial condition for the following case, where I swap the range of x:


t1 = 3000;
t2 = 4*^16;
f = 1/(16 Pi^2);
NDSolve[{y'[x] == f/x * 16 y[x]^3, y[t2] == 0.92}, y, {x, t2, t1},
Method -> {"ExplicitRungeKutta", "DifferenceOrder" -> 4}]


I get the error:


NDSolve::ndsz: At x == 4.`*^16, step size 
is effectively zero; singularity or stiff system suspected.

I tried to switch off the StiffnessTest to see if the problem goes away, which would mean that it's a stiffness problem, but the error message still shows. Also tried to use:


Method -> {StiffnessSwitching, Method -> {ExplicitRungeKutta, Automatic}}

And it didn't work either.


Considering that this is a typical differential equation encountered in physics (renormalization group equations) I'm pretty sure that there should be no singularity at x = t2, and I should be able to solve from the high-scale to the low-scale.


Any insights on why this is happening and how to deal with it?




Answer



Probably it's round-off error. Increase WorkingPrecision, and limit AccuracyGoal and PrecisionGoal. Just what to set them to depends on the actual equations.


This works for the OP's example:


t1 = 3000;
t2 = 4*^16;
f = 1/(16 Pi^2);
sol1 = NDSolve[{y'[x] == f/x*16 y[x]^3, y[t1] == 0.37`50},
y, {x, t1, t2},
Method -> {"ExplicitRungeKutta", "DifferenceOrder" -> 4},
WorkingPrecision -> 50, MaxSteps -> 20000, AccuracyGoal -> 15,

PrecisionGoal -> 15];

sol2 = NDSolve[{y'[x] == f/x*16 y[x]^3,
y[t2] == (y[t2] /. First@sol1)}, y, {x, t1, t2},
Method -> {"ExplicitRungeKutta", "DifferenceOrder" -> 4},
WorkingPrecision -> 50, AccuracyGoal -> 15, PrecisionGoal -> 15,
MaxSteps -> 20000]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...