Skip to main content

plotting - Plots quality during manipulation


I apologize if this is a obvious question and answer, I don't often use Mathematica to display plots or graphics in general to be honest. So, I was tutoring my cousin yesterday in relation to Polar functions and decided to bring up Mathematica to illustrate some of the ideas we were discussing. I quickly typed a one line command into Mathematica 8 and got an odd result. When rendering a polar function, Mathematica took a few seconds to make it smooth. Prior to this it has too many lines (see picture, before is on left and after is on the right.)


The code is:



Manipulate[PolarPlot[Sin[nS*t], {t, -5 Pi, 5 Pi}], {nS, 1, 20, 1}]

Mathematica graphics


Does anyone know why this is happening and if there is a way to make Mathematica render smooth at first?



Answer



This is done intentionally to update the plot quickly as you move the slider. Manipulate changes the setting for PerformanceGoal (via $PerformanceGoal) to "Speed" while you move the slider, then to "Quality" after you let go. This is seen in this simple demonstration:


Manipulate[{n, $PerformanceGoal}, {n, 0, 1}]

If you want the final quality while dragging at the expense of update speed you can give an explicit PerformanceGoal -> "Quality":


Manipulate[

PolarPlot[Sin[nS*t], {t, -5 π, 5 π},
PerformanceGoal -> "Quality"], {nS, 1, 20, 1}]

Alternatively you can take manual control of this process with ControlActive, and specify the PlotPoints that are used while dragging and after release:


Manipulate[
PolarPlot[Sin[nS*t], {t, -5 π, 5 π},
PlotPoints -> ControlActive[50, 150]], {nS, 1, 20, 1}]

You can turn off updating while dragging altogether using ContinuousAction:


Manipulate[PolarPlot[Sin[nS*t], {t, -5 π, 5 π}],

{nS, 1, 20, 1}, ContinuousAction -> False]

As belisarius comments you range for t is excessive: {t, -π, π} will not run multiple circuits. This will allow the plot to update much more quickly. I leave the original value in the examples above so that the effect is easier to observe.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...