Skip to main content

plotting - How to integrate numerically the product of result of NDsolve?



I am going to integrate the product of the results of NDsolve, in fact If x and y are the results as interpolating function, How I can integrate x*y numerically?


Table[{Exp[Integrate[ x[t] /. s, {t, 0, i}]]}, {i, -17.5, 10, 1}]

This line does not work for products of x[t]*y[t] or x[t]^2.


This is my entire code file:


yy = {10^-4}; rr = {0.999}; xx = {10^-15}; zz = {10^-4}; mm = {10^-4};


yy + rr + xx^2 + zz - mm^2 - zz^2/24 ic = -17.5

s = NDSolve[{D[y[t],
t] == (3 y[t])/5 - (12 m[t]^2 y[t])/5 + (2 r[t] y[t])/
5 - (6 x[t]^2 y[t])/5 + (3 y[t]^2)/5 + (7 y[t] z[t])/
5 - (y[t] z[t]^2)/10,
D[r[t], t] == -((2 r[t])/5) - (12 m[t]^2 r[t])/5 + (2 r[t]^2)/
5 - (6 r[t] x[t]^2)/5 + (3 r[t] y[t])/5 + (7 r[t] z[t])/
5 - (r[t] z[t]^2)/10,

D[x[t], t] == (9 x[t])/5 - (6 m[t]^2 x[t])/5 + (r[t] x[t])/
5 - (3 x[t]^3)/5 + (3 x[t] y[t])/10 + (x[t] z[t])/
5 - (x[t] z[t]^2)/20,
D[z[t], t] ==
12/5 + (12 m[t]^2)/5 - (12 r[t])/5 - (24 x[t]^2)/5 - (18 y[t])/
5 - (18 z[t])/5 - (6 m[t]^2 z[t])/5 + (r[t] z[t])/
5 - (3 x[t]^2 z[t])/5 + (3 y[t] z[t])/10 + (13 z[t]^2)/10 -
z[t]^3/20,
D[m[t], t] == -2 Sqrt[3] - (6 m[t])/5 -
2 Sqrt[3] m[t]^2 - (6 m[t]^3)/5 +

2 Sqrt[3] r[t] + (m[t] r[t])/5 +
2 Sqrt[3] x[t]^2 - (3 m[t] x[t]^2)/5 +
2 Sqrt[3] y[t] + (3 m[t] y[t])/10 +
2 Sqrt[3] z[t] + (6 m[t] z[t])/5 -
z[t]^2/(4 Sqrt[3]) - (m[t] z[t]^2)/20, x[ic] == xx, y[ic] == yy,
m[ic] == mm, z[ic] == zz, r[ic] == rr}, {x, y^2, z, m, r}, {t, ic,
10}]

Table[{Exp[Integrate[x[t] /. s, {t, 0, i}]]}, {i, -17.5, 10, 1}]


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...