Skip to main content

list manipulation - How to create overlapped block matrices and simplify the result


This is sort of a duplicate of Creating overlapped block matrices, but the question wasn't fully answered since the OP never returned to clarify.


I am using Kuba's answer for FEM, but I have been unable to get it to work properly. The problem is that the block matrix isn't being simplified even when the arrays we are working with are known (not arbitrary). Below is sample code. I have used examples for a, b and c, but in my actual code the matrices are larger and much more complicated.


a = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
b = {{3, 2, 7}, {2, 0, 3}, {4, 1, 2}};
c = {{5, 1, 4}, {4, 5, 8}, {9, 1, 6}};

n = {3, 3};

arrays = Array[#, n] & /@ {a, b, c}; (*arrays to work with*)

app[a1_, a2_, overlap_: 1] := With[{dim = Dimensions@a1},
ArrayPad[a1, {0, n[[1]] - overlap}] +
ArrayPad[a2, Transpose@{dim - overlap, {0, 0}}]];

Fold[app, First@arrays, Rest@arrays] // MatrixForm

Result


Notice how Mathematica returns Matrix[index] rather than simplifying it. How can I adjust the code and simplify this, and replace e.g. {{1,2,3},{4,5,6},{7,8,9}}[1,1] with 1 since that is row 1, column 1 of the matrix?




Answer



Here is a somewhat general routine for building block diagonal matrices with overlaps:


blockOverlap[matList_?ArrayQ, r : (_Integer | {__Integer}) : 1] := 
With[{spopt = SystemOptions["SparseArrayOptions"]},
Internal`WithLocalSettings[SetSystemOptions["SparseArrayOptions" ->
{"TreatRepeatedEntries" -> 1}],
SparseArray[Sort[Flatten[MapThread[
ArrayRules[SparseArray[Band[{#1, #1}] -> {#2}]] &,
{Accumulate[Prepend[(Length /@ Most[matList]) - r, 1]],
matList}]]]],

SetSystemOptions[spopt]]]

OP's example:


blockOverlap[{a, b, c}] // MatrixForm

$$\begin{pmatrix} 1 & 2 & 3 & 0 & 0 & 0 & 0 \\ 4 & 5 & 6 & 0 & 0 & 0 & 0 \\ 7 & 8 & 12 & 2 & 7 & 0 & 0 \\ 0 & 0 & 2 & 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 1 & 7 & 1 & 4 \\ 0 & 0 & 0 & 0 & 4 & 5 & 8 \\ 0 & 0 & 0 & 0 & 9 & 1 & 6 \\ \end{pmatrix}$$


A slightly more general example:


blockOverlap[{a, b, c}, {1, 2}] // MatrixForm

$$\begin{pmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 4 & 5 & 6 & 0 & 0 & 0 \\ 7 & 8 & 12 & 2 & 7 & 0 \\ 0 & 0 & 2 & 5 & 4 & 4 \\ 0 & 0 & 4 & 5 & 7 & 8 \\ 0 & 0 & 0 & 9 & 1 & 6 \\ \end{pmatrix}$$



Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....