Skip to main content

list manipulation - How to create overlapped block matrices and simplify the result


This is sort of a duplicate of Creating overlapped block matrices, but the question wasn't fully answered since the OP never returned to clarify.


I am using Kuba's answer for FEM, but I have been unable to get it to work properly. The problem is that the block matrix isn't being simplified even when the arrays we are working with are known (not arbitrary). Below is sample code. I have used examples for a, b and c, but in my actual code the matrices are larger and much more complicated.


a = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
b = {{3, 2, 7}, {2, 0, 3}, {4, 1, 2}};
c = {{5, 1, 4}, {4, 5, 8}, {9, 1, 6}};

n = {3, 3};

arrays = Array[#, n] & /@ {a, b, c}; (*arrays to work with*)

app[a1_, a2_, overlap_: 1] := With[{dim = Dimensions@a1},
ArrayPad[a1, {0, n[[1]] - overlap}] +
ArrayPad[a2, Transpose@{dim - overlap, {0, 0}}]];

Fold[app, First@arrays, Rest@arrays] // MatrixForm

Result


Notice how Mathematica returns Matrix[index] rather than simplifying it. How can I adjust the code and simplify this, and replace e.g. {{1,2,3},{4,5,6},{7,8,9}}[1,1] with 1 since that is row 1, column 1 of the matrix?




Answer



Here is a somewhat general routine for building block diagonal matrices with overlaps:


blockOverlap[matList_?ArrayQ, r : (_Integer | {__Integer}) : 1] := 
With[{spopt = SystemOptions["SparseArrayOptions"]},
Internal`WithLocalSettings[SetSystemOptions["SparseArrayOptions" ->
{"TreatRepeatedEntries" -> 1}],
SparseArray[Sort[Flatten[MapThread[
ArrayRules[SparseArray[Band[{#1, #1}] -> {#2}]] &,
{Accumulate[Prepend[(Length /@ Most[matList]) - r, 1]],
matList}]]]],

SetSystemOptions[spopt]]]

OP's example:


blockOverlap[{a, b, c}] // MatrixForm

$$\begin{pmatrix} 1 & 2 & 3 & 0 & 0 & 0 & 0 \\ 4 & 5 & 6 & 0 & 0 & 0 & 0 \\ 7 & 8 & 12 & 2 & 7 & 0 & 0 \\ 0 & 0 & 2 & 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 1 & 7 & 1 & 4 \\ 0 & 0 & 0 & 0 & 4 & 5 & 8 \\ 0 & 0 & 0 & 0 & 9 & 1 & 6 \\ \end{pmatrix}$$


A slightly more general example:


blockOverlap[{a, b, c}, {1, 2}] // MatrixForm

$$\begin{pmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 4 & 5 & 6 & 0 & 0 & 0 \\ 7 & 8 & 12 & 2 & 7 & 0 \\ 0 & 0 & 2 & 5 & 4 & 4 \\ 0 & 0 & 4 & 5 & 7 & 8 \\ 0 & 0 & 0 & 9 & 1 & 6 \\ \end{pmatrix}$$



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...