Skip to main content

numerics - How to determine BLAS/LAPACK implementation used internally for numerical matrix operations?


Is there a command which reveals which implementation of BLAS and LAPACK are used in Mathematica's matrix operations such as Eigensystem? I asked a related question on StackOverflow and one user mentioned that in Julia, the BLAS/LAPACK implementation can be found by executing versioninfo(). Several users who tried my code there had varying results, with some observing Mathematica to execute faster, and others observing Julia executing faster.


In my case, my Julia installation appears to make use of the OpenBLAS implementation, and it runs between 3 to 6 times slower than Mathematica's Eigensystem for randomly-generated arrays of size 1000×1000 to 2000×2000.


In the Mathematica documentation's tutorial/SomeNotesOnInternalImplementation, it mentions "For dense arrays, LAPACK algorithms extended for arbitrary precision are used when appropriate" and "BLAS technology is used to optimize for particular machine architectures", but nothing more.


EDIT: So in response to Kuba's comment, apparently one of the Julia devs noted that there is anomalous behavior in Julia with regards to eigenvector computation speed as a function of BLAS thread number. In short, using more threads in Julia's use of OpenBLAS appears to slow things down considerably. For reference, in Mathematica:


SetSystemOptions["MKLThreads" -> 1];

First@Timing@Eigensystem[RandomReal[{-500, 500}, {1000, 1000}]]
SetSystemOptions["MKLThreads" -> 2];
First@Timing@Eigensystem[RandomReal[{-500, 500}, {1000, 1000}]]
SetSystemOptions["MKLThreads" -> 3];
First@Timing@Eigensystem[RandomReal[{-500, 500}, {1000, 1000}]]
SetSystemOptions["MKLThreads" -> 4];
First@Timing@Eigensystem[RandomReal[{-500, 500}, {1000, 1000}]]
(*Out:*)
1.747211
1.466409

1.341609
1.357209

So I guess there's nothing wrong with Mathematica's implementation.




Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...