Skip to main content

numerics - How to determine BLAS/LAPACK implementation used internally for numerical matrix operations?


Is there a command which reveals which implementation of BLAS and LAPACK are used in Mathematica's matrix operations such as Eigensystem? I asked a related question on StackOverflow and one user mentioned that in Julia, the BLAS/LAPACK implementation can be found by executing versioninfo(). Several users who tried my code there had varying results, with some observing Mathematica to execute faster, and others observing Julia executing faster.


In my case, my Julia installation appears to make use of the OpenBLAS implementation, and it runs between 3 to 6 times slower than Mathematica's Eigensystem for randomly-generated arrays of size $1000\times1000$ to $2000\times2000$.


In the Mathematica documentation's tutorial/SomeNotesOnInternalImplementation, it mentions "For dense arrays, LAPACK algorithms extended for arbitrary precision are used when appropriate" and "BLAS technology is used to optimize for particular machine architectures", but nothing more.


EDIT: So in response to Kuba's comment, apparently one of the Julia devs noted that there is anomalous behavior in Julia with regards to eigenvector computation speed as a function of BLAS thread number. In short, using more threads in Julia's use of OpenBLAS appears to slow things down considerably. For reference, in Mathematica:


SetSystemOptions["MKLThreads" -> 1];

First@Timing@Eigensystem[RandomReal[{-500, 500}, {1000, 1000}]]
SetSystemOptions["MKLThreads" -> 2];
First@Timing@Eigensystem[RandomReal[{-500, 500}, {1000, 1000}]]
SetSystemOptions["MKLThreads" -> 3];
First@Timing@Eigensystem[RandomReal[{-500, 500}, {1000, 1000}]]
SetSystemOptions["MKLThreads" -> 4];
First@Timing@Eigensystem[RandomReal[{-500, 500}, {1000, 1000}]]
(*Out:*)
1.747211
1.466409

1.341609
1.357209

So I guess there's nothing wrong with Mathematica's implementation.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...