Skip to main content

mathematical optimization - Formulating a tailor-made Maximum Flow problem in a directed graph


Let a digraph, G, be given, where t[i,j] and a[j,i], respectively, denote transfer capacity of i allocated for transferring its information to j and absorption capacity of j allocated for absorbing information coming from i. The term, x[i], defines the information holding capacity of vertex i. If the amount of information inflowing to vertex i is larger than its capacity, then vertex i will refuse the extra information.


The following code generates an example digraph G with n=6:



Clear[trs, abs, info, edgeCapMat, system1, reducedSystem1, sa, wG1];
SeedRandom[14];
n = 6;
d = 0.3;
G1 = RandomGraph[{Round[n], Round[n*(n - 1)*d]},
DirectedEdges -> True];

trs = Table[ Table[t[i, j], {j, 1, n}], {i, 1, n}];
abs = Table[ Table[a[i, j], {j, 1, n}], {i, 1, n}] // Transpose;
info = Table[x[i], {i, 1, n}];

infoStocks[stock_] := DiagonalMatrix[stock];
edgeCapMat[trsCap_, absCap_] := (trsCap*absCap) -
DiagonalMatrix[Diagonal[trsCap*absCap]]; (* @JMissomewhatokay's contribution *)
system1 = infoStocks[info].edgeCapMat[trs, abs];

reducedSystem1 =
AdjacencyMatrix[G1]*
system1; (* the system associated with AdjacencyGraph "G" *)
sa = SparseArray[reducedSystem1];
wG1 = Graph[sa["NonzeroPositions"], EdgeWeight -> sa["NonzeroValues"],

DirectedEdges -> True, VertexLabels -> "Name" ,
EdgeLabels -> "EdgeWeight"]; (* symbolic weighted-G1 *)

(* @kglr's contribution *)
ClearAll[edgeW];
edgeW = Module[{g = #,
e = DirectedEdge @@@ Partition[#, 2, 1] & /@
FindPath[##, \[Infinity], All]},
Transpose[{e, PropertyValue[{g, #}, EdgeWeight] & /@ # & /@ e}]] &;


edgeW[wG1, 5, 2]
HighlightGraph[wG1, edgeW[wG1, 5, 2][[All, 1]]]

enter image description here


(Note: Mathematica Code to produce G has been developed by @kglr (many of us know @kglr from his contributions in MSE):


One can formulate a Maximum Flow problem for each path in G. Below I present an example max-flow problem from vertex 5 to vertex 2. (This is only one of the 30 potential problems with n=6.)


To understand what I am doing, one may simply follow the digraph G given above. Some of the vertices and parameters are not required for the paths from 5 to 2. For example, t[2]==0 and a[5]==0 are irrelevant by construction, and vertex 6, not involved in any of the paths concerned, should be excluded from the following specific problem formulation.


Clear[objFn, constraintsAll, choiceVars, fc1, fc2, fc3, fc4, fc5, fc6, fct1, fct2, fct3, fct4, fct5, fca1, fca2, fca3, fca4, fca5, bc1, bc2, bc3, bc4, tc1, tc2, tc3, tc4, ac1, ac2, ac3, ac4];

(* Given *)

{x[1] = 5, x[2] = 9, x[3] = 3, x[4] = 6, x[5] = 7, x[6] = 2};
{t[1] = 0.7, t[2] = 0, t[3] = 0.8, t[4] = 0.3, t[5] = 0.8, t[6] = 0.4};
{a[1] = 0.9, a[2] = 0.7, a[3] = 0.6, a[4] = 0.7, a[5] = 0, a[6] = 0.7};

Maximize ObjFn = t[5,3] a[3,5] x[5]
subject to:

(* feasibility constraints for: vertex information stock capacity *)
fc1 = t[5, 3] a[3, 5] x[5] <= x[3];
fc2 = t[3, 4] a[4, 3] x[3] <= x[4];

fc3 = t[3, 1] a[1, 3] x[3] <= x[1];
fc4 = t[4, 2] a[2, 4] x[4] <= x[2]; (* NEW: to be added *)
fc5 = t[1, 2] a[2, 1] x[1] <= x[2]; (* NEW: to be added *)
fc6 = t[4, 2] a[2, 4] x[4] + t[1, 2] a[2, 1] x[1] <= x[2]; (* NEW: to be added *)

(* feasibility constraints for: attention allocation *)
fct1 = 0 <= t[5, 3] <= 1;
fct2 = 0 <= t[3, 4] <= 1;
fct3 = 0 <= t[3, 1] <= 1;
fct4 = 0 <= t[4, 2] <= 1;

fct5 = 0 <= t[1, 2] <= 1;

fca1 = 0 <= a[3, 5] <= 1;
fca2 = 0 <= a[4, 3] <= 1;
fca3 = 0 <= a[1, 3] <= 1;
fca4 = 0 <= a[2, 4] <= 1;
fca5 = 0 <= a[2, 1] <= 1;

(* flow balancing conditions: inflow into i = outflow from i *)
bc1 = t[5, 3] a[3, 5] x[5] == (t[3, 4] a[4, 3] + t[3, 1] a[1, 3]) x[3]; (* inflow from 5 to 3 = outflow from 3 to 4 and 1 *)

bc2 = t[3, 4] a[4, 3] x[3] == t[4, 2] a[2, 4] x[4]; (* inflow from 3 to 4 = outflow from 4 to 2 *)
bc3 = t[3, 1] a[1, 3] x[3] == t[1, 2] a[2, 1] x[1]; (* NEW to be added: inflow from 3 to 1 = outflow from 1 to 2 *)
bc4 = t[4, 2] a[2, 4] x[4] + t[1, 2] a[2, 1] x[1] == t[5, 3] a[3, 5] x[5]; (* NEW to be added: total inflow to 2 = total outflow from 5 *)

(* transfer attention allocation constraints *)
tc1 = t[5, 3] <= t[5]; (* v5 allocates its total transfer attention to v3 *)
tc2 = t[3, 4] + t[3, 1] <= t[3]; (* v3 allocates its total transfer attention to v4 and v1 *)
tc3 = t[4, 2] <= t[4];
tc4 = t[1, 2] <= t[1];


(* absorption attention allocation constraints *)
ac1 = a[3, 5] <= a[3]; (* choice variable of v3 because v3 decides how much attention it should allocate for receiving information from v5 *)
ac2 = a[4, 3] <= a[4]; (* the same argument as above *)
ac3 = a[1, 3] <= a[1];
ac4 = a[2, 4] + a[2, 1] <= a[2]; (* v2 allocates its total attention b/w v4 and v1 *)

(* list of constraints *)
constraintsAll = {fc1, fc2, fc3, fc4, fc5, fc6, fct1, fct2, fct3, fct4, fct5, fca1, fca2, fca3, fca4, fca5, bc1, bc2, bc3, bc4, tc1, tc2, tc3, tc4, ac1, ac2, ac3, ac4};

(* list of choice variables: find the optimal values of these vars *)

choiceVars = {t[5, 3], t[3, 4], t[3, 1], t[4, 2], t[1, 2], a[3, 5],
a[4, 3], a[1, 3], a[2, 4], a[2, 1]}

Maximize[{objFn, constraintsAll}, choiceVars]

The solution:


{2.16, {t[5, 3] -> 0.786664, t[3, 4] -> 0., t[3, 1] -> 0.8, t[4, 2]->0.278239, 
t[1, 2] -> 0.671632, a[3, 5] -> 0.392253, a[4, 3] -> 4.26136*10^-10,
a[1, 3] -> 0.9, a[2, 4] -> 0., a[2, 1] -> 0.643209}}


Note: The above max-flow is only for the paths from 5 to 2. I want to solve the same problem for each one of the existing paths in G, and each problem should give me a set of values for {t[i,j], a[j,i]} that maximize the relevant objective function. Needless to say, each problem will have its own specific constraints and objective function to maximize.


Question


How can I automate the above problem formulation to find the system-wide optimal values for each path, i.e., {t[i,j], a[j,i] for all i and j}?.


(Note: This question is a simplified version of a question asked in MSE before. I made some improvement in the formulation.)



Answer



First added x[i]s as VertexCapacitys to wG1 so that we can later extract all the model elements from wG1:


wG1 = Graph[sa["NonzeroPositions"], EdgeWeight -> sa["NonzeroValues"],
DirectedEdges -> True, VertexCapacity -> {i_ :> x[i]},
VertexSize -> .2, EdgeLabels -> "EdgeWeight"];
SetProperty[wG1, VertexLabels ->

{i_ :> Placed[PropertyValue[{wG1, i}, VertexCapacity], Center]}];

HighlightGraph[wG1, edgeW[wG1, 5, 2][[All, 1]]]

enter image description here


All functions below take three arguments, a graph, a source vertex and a sink vertex:


ClearAll[decisionVarsF, subGraphF, feasibleF, vInfoStockCapF, attentionAllocationF, 
flowBalanceF, allConstraintsF , modelF, instanceF]

subGraphF = Module[{el = edgeW[##][[All, 1]]},

Graph[DeleteDuplicates[Flatten@el] ,
VertexCapacity -> {v_ :> PropertyValue[{#, v}, VertexCapacity]},
EdgeWeight -> {e_ :> PropertyValue[{#, e}, EdgeWeight]}]] &;
decisionVarsF = Union@Flatten[EdgeList[subGraphF[##]] /.
DirectedEdge[v1_, v2_] :> {t[v1, v2], a[v2, v1]}] & ;
feasibleF = Thread[0 <= decisionVarsF [##] <= 1] &;
flowBalanceF = Module[{g = subGraphF[##]},
Equal @@ (Total[PropertyValue[{g, #}, EdgeWeight] & /@
Cases[EdgeList[g], #] ] & /@ {DirectedEdge[#, _] ,
Reverse[DirectedEdge[#, _] ]}) & /@ Most[Rest[VertexList@g]] ] & ;

attentionAllocationF = Module[{gb = GatherBy[EdgeList[ subGraphF[##]] /.
DirectedEdge[v1_, v2_] :> Sequence[{v1, t[v1, v2]}, {v2, a[v2, v1]}],
{First, Head@#[[2]] &}] },
Flatten[Replace[gb, p : {{_, (_a | _t)} ..} :>
Equal[(Head[p[[1, 2]]] /. {a -> α, t -> τ})[p[[1, 1]]],
Total[p[[All, 2]]]], ∞], 1]]&;
vInfoStockCapF = Module[{g = subGraphF[##]},
Mean[#[[All, 1]]] <= Mean[#[[All, 2]]] & /@
GatherBy[PropertyValue[{g, #}, EdgeWeight] <=
PropertyValue[{g, #[[2]]}, VertexCapacity] & /@

EdgeList@subGraphF[##], Last]] &;
allConstraintsF = Flatten[Through[{feasibleF, vInfoStockCapF, attentionAllocationF,
flowBalanceF}@##]] &;
objective = t[5, 3] a[3, 5] x[5];
modelF = {{objective, And @@ allConstraintsF[##]}, decisionVarsF[##]} &;
instanceF[params_] := modelF[##] /. Flatten[Thread[#[[1]] -> #[[2]]] & /@
Thread[Array[#, 5] & /@ {x, τ, α} -> params]] &;

Examples:


modelF[wG1, 5, 2]



{{a[3, 5] t[5, 3] x[5],
0 <= a[1, 3] <= 1 && 0 <= a[2, 1] <= 1 && 0 <= a[2, 4] <= 1 && 0 <= a[3, 5] <= 1 && 0 <= a[4, 3] <= 1 && 0 <= t[1, 2] <= 1 && 0 <= t[3, 1] <= 1 && 0 <= t[3, 4] <= 1 && 0 <= t[4, 2] <= 1 && 0 <= t[5, 3] <= 1 &&
a[3, 5] t[5, 3] x[5] <= x[3] &&
a[4, 3] t[3, 4] x[3] <= x[4] &&
1/2 (a[2, 1] t[1, 2] x1 + a[2, 4] t[4, 2] x[4]) <= x[2] &&
a[1, 3] t[3, 1] x[3] <= x1 &&
Ï„[5] == t[5, 3] &&
α[3] == a[3, 5] &&

Ï„[3] == t[3, 1] + t[3, 4] &&
α[4] == a[4, 3] &&
τ[4] == t[4, 2] && α[2] == a[2, 1] + a[2, 4] &&
α1 == a[1, 3] &&
Ï„1 == t[1, 2] &&
a[1, 3] t[3, 1] x[3] + a[4, 3] t[3, 4] x[3] == a[3, 5] t[5, 3] x[5] &&
a[2, 4] t[4, 2] x[4] == a[4, 3] t[3, 4] x[3] &&
0 == a[2, 1] t[1, 2] x1 + a[2, 4] t[4, 2] x[4]},
{a[1, 3], a[2, 1], a[2, 4], a[3, 5], a[4, 3], t[1, 2], t[3, 1], t[3, 4], t[4, 2], t[5, 3]}}




parameters = {xx, tt, aa} = {{1, 3, 3, 15, 3}, {.7, 0, .8, .3, .8}, {.9, .7, .6, .7, 0}};

instanceF[parameters][wG1, 5, 2]


{{3 a[3, 5] t[5, 3],
0 <= a[1, 3] <= 1 && 0 <= a[2, 1] <= 1 && 0 <= a[2, 4] <= 1 && 0 <= a[3, 5] <= 1 && 0 <= a[4, 3] <= 1 && 0 <= t[1, 2] <= 1 && 0 <= t[3, 1] <= 1 && 0 <= t[3, 4] <= 1 && 0 <= t[4, 2] <= 1 && 0 <= t[5, 3] <= 1 &&
3 a[3, 5] t[5, 3] <= 3 &&
3 a[4, 3] t[3, 4] <= 15 &&
1/2 (a[2, 1] t[1, 2] + 15 a[2, 4] t[4, 2]) <= 3 &&

3 a[1, 3] t[3, 1] <= 1 &&
0.8 == t[5, 3] &&
0.6 == a[3, 5] &&
0.8 == t[3, 1] + t[3, 4] &&
0.7 == a[4, 3] &&
0.3 == t[4, 2] &&
0.7 == a[2, 1] + a[2, 4] &&
0.9 == a[1, 3] &&
0.7 == t[1, 2] &&
3 a[1, 3] t[3, 1] + 3 a[4, 3] t[3, 4] == 3 a[3, 5] t[5, 3] &&

15 a[2, 4] t[4, 2] == 3 a[4, 3] t[3, 4] &&
0 == a[2, 1] t[1, 2] + 15 a[2, 4] t[4, 2]},
{a[1, 3], a[2, 1], a[2, 4], a[3, 5], a[4, 3], t[1, 2], t[3, 1], t[3, 4], t[4, 2], t[5, 3]}}



NMaximize @@  instanceF[parameters][wG1,5,2] 


NMaximize::nosat: Obtained solution does not satisfy the following constraints within Tolerance -> 0.001: {3 a[4,3] t[3,4]-15 a[2,4] t[4,2]==0,-a[2,1] t[1,2]-15 a[2,4] t[4,2]==0,3 a[1,3] t[3,1]+3 a[4,3] t[3,4]-3 a[3,5] t[5,3]==0}.


{1.44, {a[1, 3] -> 0.9, a[2, 1] -> 0.636639, a[2, 4] -> 0.0633612, a[3, 5] -> 0.6, a[4, 3] -> 0.7, t[1, 2] -> 0.7, t[3, 1] -> 0.37037, t[3, 4] -> 0.42963, t[4, 2] -> 0.3, t[5, 3] -> 0.8}}




Note: if we replace Equal with GreaterEqual in definition of attentionAllocationF above then we get a solution without infeasibility warning:


solution  = NMaximize @@  instanceF[parameters][wG1,5,2] 


{1., {a[1, 3] -> 0.580483, a[2, 1] -> 2.82245*10^-12, a[2, 4] -> 0.0553563, a[3, 5] -> 0.598288, a[4, 3] -> 1.01812*10^-12, t[1, 2] -> 0.117302, t[3, 1] -> 0.574234, t[3, 4] -> 0.224126, t[4, 2] -> 5.48145*10^-13, t[5, 3] -> 0.557145}}



At this solution none of the attention allocation constraints is binding:


attentionAllocationF[wG1, 5, 2] /. GreaterEqual -> Equal /. 
Flatten[Thread[#[[1]] -> #[[2]]] & /@
Thread[Array[#, 5] & /@ {x, τ, α} -> parameters]] /. solution[[2]]



{False, False, False, False, False, False, False, False}



Another example with vertex 1 as the sink:


NMaximize @@ instanceF[parameters][wG1, 5, 1]  


 {1.44, {a[1, 2] -> 0.54086, a[1, 3] -> 0.0226264, a[2, 4] -> 0.474469,    a[3, 5] -> 0.6, a[4, 3] -> 0.645526, t[2, 1] -> 0.,   t[3, 1] -> 0.00494044, t[3, 4] -> 0.743407, t[4, 2] -> 0.202284,   t[5, 3] -> 0.8}}




Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...