Skip to main content

mathematical optimization - NMinimize to optimize function Module



I am using Nminimize for simulation based optimization. I define the objective function (simulation with a variable "a") as a module to be used in the minimization. What I have found is if I do not print the function value (f[a]) using the EvaluationMonitor, NMinimize outputs 1000s of iterations of possible values for "a" extremely quickly without running the corresponding simulation run (because if it runs simulations, it will need few seconds for each simulation run and can not do 1000s of simulations in no time). However, when I include "f[a]" in the evaluation monitor, NMinimize runs the simulation for each possible value of "a" it outputs, but is disconnected to the optimization process. This is evident because NMinimize does not converge even after 1000s of iterations, when there are only 10 possible values "a" can take and I know the minimum occurs at "a"=10. Will someone help me understand what I am missing?


demand[n_,k_]:=Min[k Vf,n capacity];
supply[n_,k_]:=Min[(n Kj-k) w,n capacity];
flo[n_,Ku_,Kd_]:=Min[demand[n,Ku],supply[n,Kd]];
dx=Vf*dt;capacity=w*Vf*Kj/(Vf+w);Kj=150.;w=20.;Vf=100.;
n=Round[Flen/dx];m=Round[SimTime/dt];p=Round[Rlen/dx];RMLocation=Round[(2/3) p];
\[Alpha][a1_]:=1800.;\[Beta][a2_]:=0.1;L=1.;Flen=4.;Rlen=3.;delta = 1.;SimTime=15./60.;dt=6./3600.;
f[a_]:=Module[{k0=ConstantArray[0,n],kr=Table[Table[0,{i1,1,p}],{i2,1,n}],\[Gamma]=ConstantArray[1,n],\[Phi]},
Clear[j];j=0;RM[x_,t_]:=100 a;k=k0;
For[i=2,i
NtwrkTT=TT=Plus@@(Plus@@kr);
While[TT>0,
For[i=2,i FQin=If[i==2,Min[demand[L,k0[[i-1]]],supply[L,k0[[i]]]],FQout];
dem=demand[L,k0[[i]]];dem=If[dem==0,0.001,dem];
\[Gamma][[i]]=Min[1,supply[L,k0[[i+1]]]/dem];
\[Phi]=\[Gamma][[i]] demand[1,kr[[i,p]]]/delta;
Qr=(\[Phi]-\[Beta][i dx] FQin) dx;
FQout=Min[demand[L,k0[[i]]],supply[L,k0[[i+1]]]];
k[[i]]=k0[[i]]+(FQin-FQout+Qr)/Vf;kr0=kr[[i]];

For[ir=2,ir<=p,ir++,
MR=If[ir==RMLocation+1,RM[i dx,j dt],capacity];
RQin=Min[MR,If[ir==2,flo[1,kr0[[ir-1]],kr0[[ir]]],RQout]];
MR=If[ir==RMLocation,RM[i dx,j dt],capacity];
RQout=Min[MR,If[ir kr[[i,ir]]=kr0[[ir]]+(RQin-RQout)/Vf];
kr[[i,1]]=If[j<=m,\[Alpha][i dx] delta/Vf,0]];
TT=Plus@@(Plus@@kr);
TT+=Plus@@k;
k0=k;NtwrkTT+=TT;j++];

NtwrkTT dt]
NMinimize[{f[a],3<=a<=12&&Element[a,Integers]},a,Method->"SimulatedAnnealing",EvaluationMonitor:>Print["a = ",a]]

edit: I edited this post extensively to make it clear. Apologize for any confusion.



Answer



I found the solution on another website "http://eternaldisturbanceincosmos.wordpress.com/2011/04/27/nminimize-in-mathematica-could-drive-you-insane/" which says "It turns out that NMinimize does not hold its arguments. This means that as the list of arguments is read from left to right, each argument is evaluated and replaced by the result of the evaluation". So I used Hold[] in the NMinimize function that fixed the problem.


Edit: Please see the responses/comments on Simulated Annealing Convergence


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...