Skip to main content

plotting - Plot the solution from DSolve


I'm trying to solve a differential equation as in the following code:


FullSimplify[DSolve[x'[t] == a + b E^(g t) + (c + d E^(-g t)) x[t], x[t], t]]

which generates


enter image description here


Now, I would like to plot it with specific parameter values assigned, for example: a = 1; b = 2; c = 3; d = 4; g = 0.1; A = 1 where I replaced the integration constant c_1 with A.


Here is my code for plotting x[t]:


a = 1; b = 2; c = 3; d = 4; g = 0.1; A = 1

x[t_] := E^(-((d E^(-g t))/g) + c t) (A + Integrate[E^((d E^(-g K[1]))/g - c K[1]) (a + b E^(g K[1])), {K[1], 1, t}])
Plot[x[t], {t, 1, 10}]

It runs forever. To check whether Mathematica is doing calculations, I tried


x[1]

and it yielded


3.83926*10^-15

which is nice. But when I tried



x[2]

I got


enter image description here


It seems Mathematica cannot compute the integral unless the integration region is $\int_1^1$. Is this because the integrand is too complicated? Is there any way to let Mathematica compute it? Thanks!



Answer



It runs forever, since you used := instead of = so it was trying to integrate it each time for each different range of t.


You need to integrate it once (which will take few seconds), and then use the result instead. Much faster now, since when you change t, it will not integrate it again. And changed g = 0.1 to g=1/10 as it is best to use exact numbers with Integrate


Try


ClearAll[t, x]

a = 1; b = 2; c = 3; d = 4; g = 1/10; A = 1;
x[t_] = E^(-((d E^(-g t))/g) + c t) (A +
Integrate[
E^((d E^(-g K[1]))/g - c K[1]) (a + b E^(g K[1])), {K[1], 1,
t}]);

Plot[x[t], {t, 1, 3}]

Mathematica graphics


Mathematica graphics



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...