Skip to main content

error - How do I format Compile[] correctly?


My Mathematica skill is still rusty, so kindly bear with me.



I'm having problem formatting expression to compile the function correctly:


$\sum _{g=1}^G \sum _{n=1}^{\text{Ns}} -\frac{e^{\frac{\text{Kg}}{P \gamma _{g,n}}} \text{Kg} \beta _{g,n}}{\text{Log}[2]} \text{ExpIntegralEi}\left[-\frac{\text{Kg}}{P \gamma _{g,n}}\right]$


All variables are known except $\beta_{g,n}$ which is an optimization variable. Here's what I've done to express it usingcompile[] function.


costFxn = 
Compile[{{P, _Real}, {Ns, _Integer}, {gh, _Real}, {Kg, _Integer}, {G, _Integer},
{\beta_{g, n}, _Integer}},

Sum[-Exp[Kg/(P gh[[g,n]])](Kg \beta_{g,n})/Log[2] ExpIntegalEi[-Kg/(P gh[[g,n]])], {g,1,G},{n,1,Ns}]
]


when I try executing this snippet, I get part spec error.


'Compile::part: "Part specification gh[[1,1]] cannot be compiled since the argument is not a tensor of sufficient rank. Evaluation will use the uncompiled function."'

I've been rummaging through the help file but not quite sure of how to correct this error.



Answer



Since gh is a tensor, you need to say what rank it is, so replace {gh, _Real} with {gh, _Real, 2} to fix the error.


costFxn = Compile[
{{P, _Real}, {Ns, _Integer}, {gh, _Real, 2},
{Kg, _Integer}, {G, _Integer}, {betaGN, _Integer}},
Sum[

-Exp[Kg/(P gh[[g, n]])] (Kg * betaGN)/
Log[2] ExpIntegralEi[-Kg/(P gh[[g, n]])],
{g, 1, G},
{n, 1, Ns}]]

However, note that ExpIntegralEi is not a compilable function, so will leave a call to MainEvaluate inside the compiled function.


That said, comparing the compiled and uncompiled versions, we find:


Do[costFxn[5, 2, {{5, 1}, {2, 3}}, 3, 2, 1], {1000}] // AbsoluteTiming
(* 0.009018 seconds *)


myCostFxn[P_, Ns_, gh_, Kg_, G_, betaGN_] :=
N[Sum[-Exp[Kg/(P gh[[g, n]])] (Kg * betaGN)/
Log[2] ExpIntegralEi[-Kg/(P gh[[g, n]])], {g, 1, G}, {n, 1, Ns}]]

Do[myCostFxn[5, 2, {{5, 1}, {2, 3}}, 3, 2, 1], {1000}] // AbsoluteTiming
(* 0.067047 seconds *)

costFxn[5, 2, {{5, 1}, {2, 3}}, 3, 2, 1]
(* = 23.4363 *)
myCostFxn[5, 2, {{5, 1}, {2, 3}}, 3, 2, 1]

(* = 23.4363 *)

So there is a benefit to compiling.




Edit


If you mean for $\beta_{g,n}$ to be a variable that depends on the value of g and n, then you need to pass it as a tensor too.


costFxn2 = Compile[
{{P, _Real}, {Ns, _Integer}, {gh, _Real, 2},
{Kg, _Integer}, {G, _Integer}, {betaGN, _Integer, 2}},
Sum[

-Exp[Kg/(P gh[[g, n]])] (Kg * betaGN[[g,n]])/
Log[2] ExpIntegralEi[-Kg/(P gh[[g, n]])],
{g, 1, G},
{n, 1, Ns}]]

costFxn2[5, 10, RandomReal[{1, 3}, {3, 10}], 4, 3, RandomInteger[{1, 3}, {3, 10}]]
(* = 355.973 *)

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...