Skip to main content

Series and that old ivar error


I am trying to compare plots of the function (1+x)^{1/3} and its power series. The code for the power series generates an error message referring to an invalid variable: 'General::ivar: -1.09993 is not a valid variable."' This message occurred with a minimum x of -1.1. Whatever value is given to the minimum x, the error message is always .00007 or .00008 greater. Yet it continues and plots the curve to maximum x. I would like to know the reason for the error message.



A previous similar question by @fasttouch "Plot Series output?" was closed as off-topic. The apparent correct answers were to apply Normal[], which I have done, and Evaluate[], which here seems to have no effect, as the curves with and without it coincide. If there is a trivial syntax error, it would not surprise me, but I can't see it, nor does the answer appear to be easily found in the documentation. I have Mathematica 8.


I am also wondering why I need to reference the series with an index in Plot, but not in Print.


x0 = 0; n = 30;

Print["Series up to 5th power: ",
Normal[Series[Power[1 + x, 1/3], {x, x0, 5}]]];

Plot[{
Evaluate[Normal[Series[Power[1 + x, 1/3], {x, x0, n}][[1]]]],
Normal[Series[Power[1 + x, 1/3] + .01, {x, x0, n}][[1]]]

}, {x, -1.1, 2.5}, Background -> White]

After submitting this, I find that all works well if I write it this way:


s[x_] := Normal[Series[Power[1 + x, 1/3], {x, x0,  n}]];

Plot[Evaluate@s[x], {x, -1, 1}]

My current guess is that there was some confusion of the x's in Series[] and Plot[].



Answer



You have the x overloaded in too many places. You use it as free variable for the Series, then you use it for the plot command variable. I think this error happens because



 ?? Plot

show it has HoldAll. Then the x for the plot takes effect before the Series is expanded. But this 'x' is now a number, so Series complains as it needs a symbol.


But best to Keep things simple. One way:


ClearAll[x]
x0 = 0; n = 30;
ser = Normal[Series[Power[1 + x, 1/3], {x, x0, n}]];
f = (1 + x)^(1/3);
Plot[Evaluate@{ser, f}, {x, -1.1, 2.5}, Background -> White,
Frame -> True, PlotLegends -> {"Series", "function"}]


Mathematica graphics


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...