Skip to main content

plotting - Modular surface of tri-focal Cassini curve ContourPlot3D missing feet


I am wondering why the following fails to cover the surface at points near $k = 0$.


c[z_] := (z + 1) (z - 1) (z + 1 + I);


ContourPlot3D[Abs[c[x + I y]] == k^3, {x, -2.5, 2}, {y, -2, 2},
{k, 0, 1.75}, Background -> White, AxesLabel -> {"x", "y", "k"}]

Mathematica graphics


Furthermore, when the left hand side is complex expanded and the equation is rearranged with $2xy+k^3$ on the right, the curve looks significantly different, with one large and one small foot, both touching at zero. Why is that?



Answer



ContourPlot3D is not very good at resolving thin features, because it only knows that the feature exists when one of the sampling points happens to land inside it. In general, one thing you can do is to increase PlotPoints, which improves the plot but takes a very long time.


ContourPlot3D[
Abs[c[x + I y]] == k^3, {x, -2.5, 2}, {y, -2, 2}, {k, 0, 1.75},
Background -> White, AxesLabel -> {"x", "y", "k"}, PlotPoints -> 20]


enter image description here


In this particular case, though, your plot is equivalent to $k = |c(x+iy)|^{1/3}$, so you could just use Plot3D instead. This is much faster because it only has to sample the two-dimensional $xy$ plane rather than the three-dimensional $xyk$ space. Then you can afford to make MaxRecursion quite large and it's still really quick to plot.


Plot3D[Abs[c[x + I y]]^(1/3), {x, -2.5, 2}, {y, -2, 2}, PlotRange -> {0, 1.75},
Background -> White, AxesLabel -> {"x", "y", "k"}, ClippingStyle -> None,
BoxRatios -> 1, MeshFunctions -> {#1 &, #2 &, #3 &}, MaxRecursion -> 5]

enter image description here


(I've added a few options to make it look like your original plot.)


Comments

Popular posts from this blog

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...