Skip to main content

calculus and analysis - Analytic result for integral?


I would like to do the integral


$$I=\int_0^{2\pi}d\phi\frac{\ln(e^{i\phi}+e^{-i\phi}-\frac{5}{2})}{e^{i\phi}+e^{-i\phi}-\frac{5}{2}}.$$


Numerically, we readily find that it has a specific finite value:


fun = -(5/2) + E^(-I \[Phi]) + E^(I \[Phi]);
NIntegrate[ Log[fun]/fun, {\[Phi], 0, 2 \[Pi]}]


-0.493368 - 13.1595 I




Now, if we want to consider the integral analytically, we could substitute for instance


$$e^{i\phi}=z~~~,~~~d\phi=\frac{-i}{z}dz$$


which leads to


$$I=-i\oint_{|z|=1}\frac{\ln\left[\frac{1}{z}(z - \frac{1}{2}) (z - 2)\right]}{(z - \frac{1}{2}) (z - 2)}$$


This looks like there is a pole at z=1/2 within the unit circle. So I tried to get the residue:


Residue[-(( I Log[((-2 + z) (-(1/2) + z))/z])/((-2 + z) (-(1/2) + z))), {z, 1/2}]


Residue[-(( I Log[((-2 + z) (-(1/2) + z))/z])/((-2 + z) (-(1/2) + z))), {z, 1/2}]




which just gave back the input. Also, the 1/z term inside the logarithm seems to blow up inside the unit circle as well. This integral is confusing and does not seem to be accessible via straightforward analytical methods. Is there a way to evaluate it exactly using Mathematica?



Answer



Noting that $e^{\text{i}\phi} + e^{-\text{i}\phi} = 2\cos\phi$, simply write:


f[t_] := Log[t Cos[fi] - 5/2]/(2 Cos[fi] - 5/2)

g[t_] := Integrate[f[t], {fi, 0, 2 Pi}]

h[t_] := Integrate[Integrate[f'[t], {fi, 0, 2 Pi}], t]

Clear[c]; {{c}} = {c} /. Solve[g[0] == (h[t] /. t -> 0) + c, c];


Limit[h[t] + c, t -> 2, Direction -> 1] // Expand

I get:


$-\frac{2}{3}\pi\log\left(\frac{81}{64}\right) - \frac{4}{3}\pi^2\,\text{i} \approx -0.493368 - 13.1595\,\text{i}$


without knowing anything about Complex Analysis.




Theorems on the derivation under the integral sign


Let $\Gamma \subseteq \mathbb{C}$ a smooth curve arc and $f : \Gamma \to \mathbb{C}$ is a continuous function. Called $F : \mathbb{C}\backslash \Gamma \to \mathbb{C}$ the function defined by placing $F(\zeta) := \int_{\Gamma} \frac{f(z)}{z-\zeta}\text{d}z $, it is holomorphic in $\mathbb{C}\backslash \Gamma$. In addition, $F$ possesses in $\mathbb{C}\backslash \Gamma$ derivatives of still higher order (which are therefore all holomorphic functions in $\mathbb{C}\backslash \Gamma$) and, for each $n \in \mathbb{N}$, you have $F^{(n)}(\zeta) = n!\int_{\Gamma} \frac{f(z)}{(z-\zeta)^{n+1}}\text{d}z$, i.e. the derivatives of $F$ can be calculated by deriving under the integral sign.


Wanting to simplify things, let $\Omega \subset \mathbb{R}^n$ an open limited, $I \subset \mathbb{R}$ an open interval and $f : I \times \bar{\Omega} \to \mathbb{R}$ a continuous function. If $\frac{\partial f}{\partial t}(t,x)$ continues exists for each $(t,x) \in I \times \bar{\Omega}$, then you have $\frac{\text{d}}{\text{d}t}\int_{\Omega} f(t,x)\text{d}x = \int_{\Omega} \frac{\partial f}{\partial t}(t,x)\text{d}x$.



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...