Skip to main content

pattern matching - How can a big table be treated as a database?



I often work with big tables that I want to treat kind of like a database. Here's an example table.


theTable = {
{"id","color","size","flavor"},
{1,"blue",5,"cherry"},
{2,"green",5,"piquant"},
{3,"blue",20,"peppermint"}
}

In a database I would ask


SELECT * FROM `theTable` WHERE `color` = 'blue' AND `size` > 10


and get effectively


{{3, "blue", 20, "peppermint"}}

in response. In Mathematica, I need to determine the "column number" for color and size, then use Cases with And to do the same thing.


Cases[theTable[[2 ;;]], a_ /; And[a[[2]] == "blue", a[[3]] > 10]]

This is operationally much clumsier than the database way. Unfortunately setting up a database for every such table is too much extra work, particularly since I want the data to end up in mma anyway.


How can this approach be improved? Specifically, how can I more easily use the column names directly, instead of their part numbers? And how can I avoid the ugly a_/;f[a] pattern?



Answer




A way of getting around the a_/;test[a] syntax is to write out the tests in string form, and use replace to insert the values. For this to work you need to build rules from your table. Here is a simple implementation:


 SetAttributes[queryCriteria, HoldAll]
queryCriteria[theTable_, query_] := Function[{entry},
Unevaluated[query] /. (Rule @@@ Transpose[{theTable[[1]], entry}]), HoldAll]

Select[theTable, queryCriteria[theTable, "color" == "blue" && "size" > 10]]

Personally I would prefer not having to give theTable as an argument to the query function constructor, since conceptually you shouldn't need a table to define a query, however it's needed during the construction because you have the field names listed in the first row. A way to nicely work around this is to consider a query an indpependent entitiy, which doesn't use the table until it's used in Select. This can be defined by setting an Upvalue pattern for Select, to resemble your included example, I use where as a name for the query:


 SetAttributes[where, HoldAll]
Select[table_, where[query_]] ^:= Select[table, queryCriteria[table, query]]


So that the query can be written:


 Select[theTable, where["color" == "blue" && "size" > 10]]

This is all just ways of doing a similar thing with different syntax however. I would expect that performance issues become more important with big Databases.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...