Skip to main content

solve non-linear system of equations


I have a system of equations and I want to solve it to get x, y


{u=C1+(x−C1)(1+k1((x−C1)(x−C1)+(y−C2)(y−C2)))v=C2+(y−C2)(1+k2((x−C1)(x−C1)+(y−C2)(y−C2)))



If it possible I want to know how can it can be done in C++ too.


Update: Solve[] gives me very large output, so the problem is that I want to place solution in my C++ aplication and C1, C2, k1, k2 are variables. CForm[] doesn't help, I need more simple and suitable form for C++ to use.



Answer



Without further assumptions of your used constants the solution is quite lengthy


eqs = {
u == c1 + (x - c1) (1 +
k1 ((x - c1) (x - c1) + (y - c2) (y - c2))),
v == c2 + (y - c2) (1 + k2 ((x - c1) (x - c1) + (y - c2) (y - c2)))
};
Reduce[eqs, {x, y}]


If you can provide numerical values for your constants Cn and kn it is probably possible to shorten the solution.


Please have a look on your system and notice, how the number of possible (real) solutions varies when the variables change


Manipulate[
ContourPlot[{u ==
c1 + (x - c1) (1 + k1 ((x - c1) (x - c1) + (y - c2) (y - c2))),
v == c2 + (y - c2) (1 +
k2 ((x - c1) (x - c1) + (y - c2) (y - c2)))}, {x, -5,
5}, {y, -5, 5}, PlotPoints -> ControlActive[10, 40],
MaxRecursion -> ControlActive[1, 5]],

{u, -1, 1},
{v, -1, 1},
{c1, -1, 1},
{c2, -1, 1},
{k1, -1, 1},
{k2, -1, 1}
]

enter image description here


Addionally, lets investigate in the first solution you get from the Reduce call



k1 == 0 && x == u && k2 != 0 && 
(y == Root[(-c1^2)*c2*k2 - c2^3*k2 + 2*c1*c2*k2*u - c2*k2*u^2 - v +
(1 + c1^2*k2 + 3*c2^2*k2 - 2*c1*k2*u + k2*u^2)*#1 - 3*c2*k2*#1^2 + k2*#1^3 & ,1] ||
y == Root[(-c1^2)*c2*k2 - c2^3*k2 + 2*c1*c2*k2*u - c2*k2*u^2 - v +
(1 + c1^2*k2 + 3*c2^2*k2 - 2*c1*k2*u + k2*u^2)*#1 - 3*c2*k2*#1^2 + k2*#1^3 & ,2] ||
y == Root[(-c1^2)*c2*k2 - c2^3*k2 + 2*c1*c2*k2*u - c2*k2*u^2 - v +
(1 + c1^2*k2 + 3*c2^2*k2 - 2*c1*k2*u + k2*u^2)*#1 - 3*c2*k2*#1^2 + k2*#1^3 & ,3])

What I want to show you is that you can hack the output of Reduce directly into C++. The only thing you need is a if/else way through all the possible forms your solution can have.


Looking at the output above, you see that when k1==0 and k2!=0 your solution is that x=u and y can take 3 values. These three values are the roots of a polynomial of third order. Therefore, your three points are {x,y1}, {x,y2}, {x,y3}. Using the Manipulate and set k1 to zero shows, that this is correct:



enter image description here


The points where the red and the blue lines cross have indeed the same x and 3 different y.


Therefore, the only thing required for your C++ code are basic arithmetic operations and a root-solver for polynomials of third order.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]