Skip to main content

differential equations - Using DSolve with a boundary condition at -Infinity


I would like to solve a simple 2nd-order ODE with one of the boundary conditions defined at $ -\infty $. The ODE I am looking to solve is:


$$ w''(z)-2i\pi^2w(z)=0 $$


with the corresponding boundary conditions:


$$ w(z=-\infty)=0, \; w'(z=0)=0+i\dfrac{\tau_{0}}{\mu}. $$


My attempt at a solution using DSolve is as follows:


DSolve[{-2 I \[Pi]^2 w[z] + (w^\[Prime]\[Prime])[z] == 0, 
w[-Infinity] == 0, w'[0] == 0 + I Subscript[\[Tau], 0]/\[Mu]}, w[z],z]


but I only get an empty set of curly brackets as an output. I checked the rest of my snipet of code without the w[-Infinity]==0 boundary condition, and that works as expected; therefore, I know that this is a problem with the boundary condition at $z=-\infty$. I am looking for methods with which I can solve simple ODE's with boundary conditions at infinity, and any help would be greatly appreciated.



Answer



This is the solution of your equation without the boundary conditions:


sol = DSolve[-2 I \[Pi]^2 w[z] + w''[z] == 0, w[z], z] // ExpToTrig //
ComplexExpand

(* {{w[z] ->
C[1] Cos[\[Pi] z] Cosh[\[Pi] z] + C[2] Cos[\[Pi] z] Cosh[\[Pi] z] +
C[1] Cos[\[Pi] z] Sinh[\[Pi] z] - C[2] Cos[\[Pi] z] Sinh[\[Pi] z] +

I (C[1] Cosh[\[Pi] z] Sin[\[Pi] z] - C[2] Cosh[\[Pi] z] Sin[\[Pi] z] +
C[1] Sin[\[Pi] z] Sinh[\[Pi] z] + C[2] Sin[\[Pi] z] Sinh[\[Pi] z])}} *)

Now let us take its limit at z->-Infinity:


Limit[w[z] /. sol, z -> -\[Infinity]]

(* {ComplexInfinity} *)

Let us now try this limit at C[1]=0 and C[2]=0:


Limit[w[z] /. sol /. {C[1] -> 0}, z -> -\[Infinity]]


(* ComplexInfinity *)

Limit[w[z] /. sol /. {C[2] -> 0}, z -> -\[Infinity]]

(* 0 *)

The latter gives us what we need, therefore, C[2]=0.


Let us now implement the second boundary condition:


    Solve[(D[(w[z] /. sol /. C[2] -> 0), z] /. z -> 0) == I*t/m, C[1]]


(* {{C[1] -> ((1/2 + I/2) t)/(m \[Pi])}} *)

Done. Have fun!


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...