Skip to main content

list manipulation - How to randomly select subsets


I have a list of around 300 elements. I want to sample subsets of length 25 such that my samples are all distinct. My first inclination was to use something like RandomSample[Subsets[list, {25}], 1000], but the problem is the number of subsets of length 25 out of a 300 element set is way to big for the computer to deal with. Anyone have a nice way to do this?



Answer



This question may be a duplicate but for the time being:



list = Range[300];

The number of subsets length 25:


n = Binomial[300, 25]


1953265141442868389822364184842211512

Five samples:


samp = RandomInteger[{1, n}, 5]



{1097179597483122074395819626389736050,
1278400886908268917844987164926797363,
1855898035549513136165016617586671669,
1005956584417012779260052361741534263,
1845054078551378518016127833496347335}

Your subsets:


 Subsets[list, {25}, {#}][[1]] & /@ samp



{{10,15,57,64,65,73,82,115,120,130,133,160,161,164,178,192,196,218,223,235,238,240,267,271,290},
{12,54,58,81,90,91,115,130,146,181,189,204,205,218,222,230,233,234,235,254,256,268,281,283,284},
{33,42,45,65,78,81,85,118,151,167,172,174,202,203,207,208,211,212,223,239,246,251,254,262,267},
{9,12,35,69,72,77,79,109,113,116,141,144,158,163,195,202,221,228,230,231,254,259,267,280,292},
{32,39,49,53,62,102,104,132,135,159,164,167,169,172,191,211,244,245,253,263,265,271,282,283,286}}

Be aware that RandomInteger could produce duplicate samples however for the example given it is extremely unlikely. You can produce more an use DeleteDuplicates and Take as needed.





I think kguler's answer is the better method, and I wish I had had the insight to realize it myself, however there is still some value in the method above. Referring to subsets by a single number can make them easier to handle.



  • They take less space.

  • Comparison (e.g. for removing duplicates) requires a single numeric comparison rather than a list comparison.

  • A given subset is independent of the input list; only length of input and subset matter.


One can "unrank" them at any time using the third parameter of Subsets as shown above.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...