Skip to main content

list manipulation - Riffle and Partition


At some point I noticed that I was using Riffle and Partition together a lot. I would do things like



Partition[Riffle[{1,2,3},{4,5,6}],2]

or


Partition[Riffle[{1,2,3}, 6 , {2, -1, 2}], 2]

The question is: are better alternatives, in terms of memory and speed?



Answer



Here is a solution for both "idioms", using LibraryLink and some kind of custom generics. I'm not sure if I like the abstractions, but here is the answer anyway.


<< SymbolicC`
<< Developer`

<< CCompilerDriver`
<< CCodeGenerator`

The definitions below are made to help abstract this function, so that it works for integers, real numbers and complex numbers.


(*lfn is short for library function name*)
(*LL is short for LibraryLink*)

typeTableHeaders = {"type name", "c type", "LL generic name",
"abbreviation in lfn"};
typeTable =

{
{Integer, "mint", "Integer", "I"},
{Real, "mreal", "Real", "R"},
{Complex, "mcomplex", "Complex", "C"}
};
cTypes = typeTable[[All, 2]];

abstractFunctionName = "parif";

libraryFunctionNames =

abstractFunctionName <> "T" <> # <> "_T" & /@ typeTable[[All, 4]];

getters = StringJoin["MArgument_get", #] & /@ typeTable[[All, 3]];

dataGetters = "MTensor_get" <> # <> "Data" & /@ typeTable[[All, 3]];

tensorTypes = "MType_" <> # & /@ typeTable[[All, 3]];

libraryFunctionNamesSingle = # <> "Single" & /@ libraryFunctionNames;
libraryFunctionNamesMulti = # <> "Multi" & /@ libraryFunctionNames;


relations =
Hold@
{
getter -> getters,
dataGetter -> dataGetters,
type -> cTypes ,
tensorType -> tensorTypes
};


preRules = Thread /@ First@ MapAt[HoldPattern, relations, {1, All, 1}];

The next definitions distinguish between the "single" case where we want to riffle with a constant, and the "multi" case where we want to riffle two lists. I have not taken the effort of making this code more expressive. That is, there is some duplicate code.


preRulesSingle =
Append[
preRules,
Thread[libraryFunctionName -> libraryFunctionNamesSingle]
];

singleDIERule =

setupSecondInputAccess :>
Sequence[
CDeclare[type, "inputSingleton"],
CAssign["inputSingleton", CCall[getter, CArray["Args", 1]]]
];

rulesSingle =
Thread[
Join[
preRulesSingle

,
{
HoldPattern@inputElement -> "inputSingleton",
HoldPattern@determineNextInputElement :> Sequence[],
disownIfNeeded :> Sequence[],
singleDIERule
}
]
];


preRulesMulti =
Append[
preRules,
Thread[libraryFunctionName -> libraryFunctionNamesMulti]
];


multiDIERule =
setupSecondInputAccess :>
Sequence[

CDeclare["MTensor", "input2"],
CAssign["input2",
CCall["MArgument_getMTensor", CArray["Args", 1]]],
CDeclare[CPointerType[type], "input2DataPtr"],
CAssign[
"input2DataPtr",
CCall[CPointerMember["libData", dataGetter], {"input2"}]
]
];


rulesMulti =
Thread[
Join[
preRulesMulti
,
{
HoldPattern@inputElement -> CDereference["input2DataPtr"],
HoldPattern@determineNextInputElement :>
COperator[Increment, "input2DataPtr"],
disownIfNeeded :>

CCall[CPointerMember["libData", "MTensor_disown"], "input2"],
multiDIERule
}
]
];

Now we construct some SymbolicC with some tokens inside it


parifSCHeld =
Hold@
CFunction[

"int"
,
libraryFunctionName
,
{{"WolframLibraryData", "libData"}, {"mint",
"Argc"}, {CPointerType["MArgument"], "Args"}, {"MArgument",
"Res"}}
,

CBlock[

{
CDeclare["int", CAssign["err", "LIBRARY_NO_ERROR"]],
CDeclare["MTensor", "input"],
CDeclare["MTensor", "result"],
CDeclare["int", "inputLength"],
CDeclare["mint", CArray["resultDimensions", 2]],
CAssign[
"input",
CCall["MArgument_getMTensor", CArray["Args", 0]]
],

CAssign[
"inputLength",
CDereference[
CCall[
CPointerMember["libData", "MTensor_getDimensions"],
{"input"}
]
]
],
CAssign[

CArray["resultDimensions", 0],
"inputLength"
],
CAssign[
CArray["resultDimensions", 1],
2
]
,
CAssign["err",
CCall[

CPointerMember["libData", "MTensor_new"],
{tensorType, 2, "resultDimensions", CAddress["result"]}
]
]
,
CDeclare[CPointerType[type], "inputDataPtr"],
CAssign[
"inputDataPtr",
CCall[
CPointerMember["libData", dataGetter],

{"input"}
]
],
CDeclare[CPointerType[type], "resultDataPtr"],
CAssign[
"resultDataPtr",
CCall[
CPointerMember["libData", dataGetter],
{"result"}
]

]
,
CDeclare["long", CAssign["iter", 0]]
,
setupSecondInputAccess
,
CWhile[
COperator[Less, {"iter", "inputLength"}],
CBlock[
{

CAssign[
CDereference["resultDataPtr"],
CDereference["inputDataPtr"]
],

COperator[Increment, "resultDataPtr"],
COperator[Increment, "inputDataPtr"],
CAssign[
CDereference["resultDataPtr"],
inputElement

],
determineNextInputElement,
COperator[Increment, "resultDataPtr"],
COperator[Increment, "iter"]
}
]
]
,
CCall["MArgument_setMTensor", {"Res", "result"}],
CCall[CPointerMember["libData", "MTensor_disown"], "input"],

disownIfNeeded,
CReturn["err"]
}
]
];

Now, we turn it into a string, that would normally correspond to the contents of a .c file.


symbCWithReplacementsSingle = parifSCHeld //. rulesSingle;
symbCWithReplacementsMulti = parifSCHeld //. rulesMulti;
cStrings =

"DLLEXPORT" <> " " <> ToCCodeString@First@# & /@
Join[symbCWithReplacementsSingle, symbCWithReplacementsMulti];
cFunctionsString = StringRiffle[cStrings, "\n\n"];

boilerPlate = "
#include \"WolframLibrary.h\"

/* Return the version of Library Link */
DLLEXPORT mint WolframLibrary_getVersion( ) {
\treturn WolframLibraryVersion;

}

/* Initialize Library */
DLLEXPORT int WolframLibrary_initialize( WolframLibraryData \
libData) {
\treturn LIBRARY_NO_ERROR;
}

/* Uninitialize Library */
DLLEXPORT void WolframLibrary_uninitialize( WolframLibraryData \

libData) {
\treturn;
}

";

totalCString = boilerPlate <> cFunctionsString;

The code below creates the library.


libName = "parif";

CreateLibrary[totalCString, libName]

This loads the functions (again duplicate code)


parifFunctionsSingle = 
LibraryFunctionLoad[
libName, #2, {{#, 1, "Shared"}, {#}}, {#, 2}] & @@@
Transpose@{typeTable[[All, 1]], libraryFunctionNamesSingle};

Set @@ {ToExpression["parifSingle" <> #, InputForm,
Unevaluated], #2} & @@@

Transpose@{typeTable[[All, 4]], parifFunctionsSingle};

parifFunctionsMulti =
LibraryFunctionLoad[
libName, #2, {{#, 1, "Shared"}, {#, 1, "Shared"}}, {#, 2}] & @@@
Transpose@{typeTable[[All, 1]], libraryFunctionNamesMulti};

Set @@ {ToExpression["parifMulti" <> #, InputForm,
Unevaluated], #2} & @@@
Transpose@{typeTable[[All, 4]], parifFunctionsMulti};


Timing comparisons


betterish[a_List,const_]:=Transpose[{a,ConstantArray[const,Length@a]}];
arFlatWiz[a_,b_]:= ArrayFlatten[{{{a}\[Transpose],b}}];

nn=10^7;
randomIntegers=RandomInteger[100,nn];

(resB=betterish[randomIntegers,2])//RepeatedTiming//First
(resAFW=arFlatWiz[randomIntegers, 2])//RepeatedTiming//First

(resSI=parifSingleI[randomIntegers,2])//RepeatedTiming//First

resB === resAFW===resSI

gives



0.201
0.213
0.0769
True


And


randomReals1=RandomReal[1,nn];
randomReals2=RandomReal[1,nn];

(resT=Transpose@{randomReals1, randomReals2})//RepeatedTiming//First
(resMRLL=parifMultiR[randomReals1,randomReals2])//RepeatedTiming//First

resMRLL===resT


gives



0.18
0.0838
True

So indeed we are faster than Transpose here.


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...