Skip to main content

plotting - particle motion in 1D anharmonic well


I have set of data points but I want to draw the trajectory of particle moving inside this well either in phase space. How can I do this? I tried with VectorPlot but not come out with good and set of data point are as follows: mass of particle is 10^-24 kg and here in this data first column is position & second potential. I am very thankful to you if you can help me to do this. Thank you.


x={2.*10^-6, 1.9*10^-6, 1.8*10^-6, 1.7*10^-6, 1.6*10^-6, 1.5*10^-6, 
1.4*10^-6, 1.3*10^-6, 1.2*10^-6, 1.1*10^-6, 1.*10^-6, 9.*10^-7,
8.*10^-7, 7.*10^-7, 6.*10^-7, 5.*10^-7, 4.*10^-7, 3.*10^-7, 2.*10^-7,
1.*10^-7, 0, -1.*10^-7, -2.*10^-7, -3.*10^-7, -4.*10^-7, -5.*10^-7, \
-6.*10^-7, -7.*10^-7, -8.*10^-7, -9.*10^-7, -1.*10^-6, -1.1*10^-6, \
-1.2*10^-6, -1.3*10^-6, -1.4*10^-6, -1.5*10^-6, -1.6*10^-6, \
-1.7*10^-6, -1.8*10^-6, -1.9*10^-6, -2.*10^-6}


Vx = {-2.39203*10^-19, -2.38026*10^-19, -2.37166*10^-19, -2.36809*10^-19, \
-2.37117*10^-19, -2.38208*10^-19, -2.40143*10^-19, -2.42925*10^-19, \
-2.46503*10^-19, -2.50782*10^-19, -2.55644*10^-19, -2.60954*10^-19, \
-2.6657*10^-19, -2.72342*10^-19, -2.78094*10^-19, -2.83618*10^-19, \
-2.88644*10^-19, -2.92835*10^-19, -2.95779*10^-19, -2.97001*10^-19, \
-2.96*10^-19, -2.92287*10^-19, -2.8545*10^-19, -2.75213*10^-19, \
-2.61492*10^-19, -2.44433*10^-19, -2.24423*10^-19, -2.0208*10^-19, \
-1.782*10^-19, -1.53693*10^-19, -1.29492*10^-19, -1.06466*10^-19, \
-8.5334*10^-20, -6.6606*10^-20, -5.0546*10^-20, -3.7171*10^-20, \
-2.6278*10^-20, -1.75*10^-20, -1.0373*10^-20, -4.409*10^-21,

1.*10^-21}


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...