So I am working with a set of three coupled DEs that I numerically solve. This is simple enough
NDSolve[{N1'[t] == -R1[ef]*N1[t] + b1*Γ0*N2[t],
N2'[t] == +R1[ef]*N1[t] - Γ0*N2[t] ,
N3'[t] == b2*Γ0*N2[t] - Γ0/2 N3[t],
N1[0] == .65, N2[0] == 0, N3[0] == 0},
{N1, N2, N3}, {t, 0, 300}]
Then I integrate my N3
function (times t
)
NIntegrate[t*Evaluate[N2[t] /. s], {t, 0, 300}]
In my DE's I have R=-Log[1-ef]
, so what I want to know is how can I make a table (or anything) that will go through, solve this and calculate that integral as a function of ef
?
Thanks
Answer
Method I
With some valuable input from @halirutan, we will be able to integrate outside ParametricNDSolve
and plot the resulting function,
b1 = 1; Γ0 = 2; b2 = 1;
R1 = -Log[1 - ef]
sol = ParametricNDSolve[{N1'[t] == -R1*N1[t] + b1*Γ0*N2[t],
N2'[t] == +R1*N1[t] - Γ0*N2[t],
N3'[t] == b2*Γ0*N2[t] - Γ0/2 N3[t],
N1[0] == .65, N2[0] == 0, N3[0] == 0},
{N1, N2, N3}, {t, 0, 300}, {ef}]
Table[NIntegrate[t*N2[ef][t] /. sol, {t, 0, 300}], {ef, 0.1, 0.5, 0.1}]
{1463.78, 2935.9, 4426.87, 5950.87, 7528.18}
ListLinePlot[%, DataRange -> {0.1, 0.5}, Frame -> True]
Method II
Considering, @CarlWoll suggestion, we can get the same result as we have from method I.
sol1 = ParametricNDSolve[{N1'[t] == -R1*N1[t] +
b1*Γ0*N2[t],
N2'[t] == +R1*N1[t] - Γ0*N2[t],
N3'[t] == b2*Γ0*N2[t] - Γ0/2 N3[t],
N1[0] == .65, N2[0] == 0, N3[0] == 0, N4'[t] == t N2[t],
N4[0] == 0}, {N1, N2, N3, N4}, {t, 0, 300}, {ef}];
f[ef_] = (N4[ef][t] /. sol1 /. t -> 300 - N4[ef][t] /. sol1 /. t -> 0);
Table[Evaluate[f[ef]], {ef, 0.1, 0.5, 0.1}]
{1463.78, 2935.9, 4426.87, 5950.87, 7528.18}
Method III
sol2[ef_] :=
NDSolve[{N1'[t] == -(-Log[1 - ef])*N1[t] + b1*Γ0*N2[t],
N2'[t] == (-Log[1 - ef])*N1[t] - Γ0*N2[t],
N3'[t] == b2*Γ0*N2[t] - Γ0/2 N3[t],
N1[0] == .65, N2[0] == 0, N3[0] == 0, N4'[t] == t N2[t],
N4[0] == 0}, {N1, N2, N3, N4}, {t, 0, 300}];
f[ef_] = N4[t] /. (sol2 /@ {0.1, 0.2, 0.3, 0.4, 0.5}) /. t -> 300
{{1463.78}, {2935.9}, {4426.87}, {5950.87}, {7528.18}}
Comments
Post a Comment