This code visualize a complex map, but it looks rather cumbersome:
F[z_] := z^2;
t1 = 0; 
t2 = Pi/3;
r1 = 1;
r2 = 3;
dt = (t2 - t1)/10;
dr = (r2 - r1)/10;
p1 = Show[
  Table[ParametricPlot[ReIm[r Exp[I t]], {r, r1, r2}], {t, t1, t2, 
    dt}],
  Table[ParametricPlot[ReIm[r Exp[I t]], {t, t1, t2}], {r, r1, r2, 
    dr}],
  ParametricPlot[ReIm[r Exp[I 4 dt]], {r, r1 + 5 dr, r1 + 6 dr}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[ReIm[r Exp[I 5 dt]], {r, r1 + 5 dr, r1 + 6 dr}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[ReIm[r Exp[I 6 dt]], {r, r1 + 6 dr, r1 + 7 dr}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[ReIm[r Exp[I 3 dt]], {r, r1 + 6 dr, r1 + 7 dr}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[
   ReIm[(r1 + 7 dr) Exp[I t]], {t, t1 + 3 dt, t1 + 6 dt}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[
   ReIm[(r1 + 6 dr) Exp[I t]], {t, t1 + 3 dt, t1 + 4 dt}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[
   ReIm[(r1 + 6 dr) Exp[I t]], {t, t1 + 5 dt, t1 + 6 dt}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[
   ReIm[(r1 + 5 dr) Exp[I t]], {t, t1 + 4 dt, t1 + 5 dt}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  Axes -> None, PlotRange -> All]
p2 = Show[
  Table[ParametricPlot[ReIm[F[r Exp[I t]]], {t, t1, t2}], {r, r1, r2, 
    dr}],
  Table[ParametricPlot[ReIm[F[r Exp[I t]]], {r, r1, r2}], {t, t1, t2, 
    dt}],
  ParametricPlot[ReIm[(r Exp[I 4 dt])^2], {r, r1 + 5 dr, r1 + 6 dr}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[ReIm[(r Exp[I 5 dt])^2], {r, r1 + 5 dr, r1 + 6 dr}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[ReIm[(r Exp[I 6 dt])^2], {r, r1 + 6 dr, r1 + 7 dr}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[ReIm[(r Exp[I 3 dt])^2], {r, r1 + 6 dr, r1 + 7 dr}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[
   ReIm[((r1 + 7 dr) Exp[I t])^2], {t, t1 + 3 dt, t1 + 6 dt}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[
   ReIm[((r1 + 6 dr) Exp[I t])^2], {t, t1 + 3 dt, t1 + 4 dt}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[
   ReIm[((r1 + 6 dr) Exp[I t])^2], {t, t1 + 5 dt, t1 + 6 dt}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ParametricPlot[
   ReIm[((r1 + 5 dr) Exp[I t])^2], {t, t1 + 4 dt, t1 + 5 dt}, 
   PlotStyle -> {Black, Thickness[0.01]}],
  ImageSize -> 200,
  Axes -> None,
  PlotRange -> All]
I'm wondering if there is a way to make it significantly shorter since there are lots of repeating functions used.


Comments
Post a Comment